Motivation

- Few neutrino-nucleus interactions measured at $E_{\nu} < 300$ MeV (fig 1), energies relevant for supernova ν
- 127I charged-current interaction proposed for solar and supernova ν detection by Haxton$^{[4]}$, can study interaction with well understood neutrino source at SNS
- Measurement of cross section could provide insight for g_λ quenching$^{[5]}$ at a momentum transfer of ~ 30 MeV, relevant for neutrinoless double beta decay

Previous Measurement

- Exclusive 127I ν_e charged-current cross section measured at Los Alamos Meson Production Facility (LAMPF) in the 1990s, experiment E-1213$^{[6]}$
- Required final state of reaction to be 127Xe, inclusive cross section never measured$^{[7]}
- No energy dependence measured (flux-averaged only)
- Used coincidences from 127Xe decays to calculate amount 127Xe produced
 127Xe \rightarrow^{127}I $^+ + \gamma$ (203, 375 keV)
 127I \rightarrow^{127}Xe $^+ + \gamma$ (\sim0.9, 4.7 keV)
- Reported flux-averaged cross section over stopped-pion source ν_e spectrum of
 $\sigma = 2.84 \pm 0.91$ (stat) ± 0.25 (sys) $\times 10^{-40}$ cm2

Neutrinos at the SNS

- Spallation Neutron Source (SNS) creates neutrinos through stopped-pion decay
- 50 Hz pulsing, \sim400 ms FWHM pulses, energy similar to supernova neutrinos
- ν_e delayed with respect to beam, reduces beam-related backgrounds for charged-current signals
- ν_e flux at 20m: $\Phi \approx 1.4 \times 10^7 \nu_e$ / cm2 / sec

The NaIνE Detector

- NaIνE (Na ν-Experiment) designed to measure inclusive 127I charged-current signals, energy dependence
- Consists of twenty-four 7.7-kg NaI[Tl] scintillators, \sim20 m from SNS target, prototype for larger detector
- Triggers with internal logic, waveforms separated into eight 1250 ns windows, counts integrated in windows
- Calibrate and track gain changes over time using intrinsic *127I* and *91Zr* peaks
- Largest background for reaction from cosmic muons, veto panels and steel used to reduce backgrounds
- See poster #13 for a machine-learning approach to further reducing cosmic muon backgrounds

Signal Prediction & g_λ

- Use MARLEY$^{[5]}$ to simulate allowed ν_e charged-current reactions on 127I
- Total cross section, states excited depend on $g_\lambda$$^{[3]}
- Forbidden transitions needed to understand g_λ quenching's effect on energy spectrum, not yet included in MARLEY
- Simulations do predict a g_λ quenching effect on total cross section

Conclusions

- NaIνE trying to measure unobserved inclusive ν_e charged-current cross section on 127I
- Collecting data since 2016, analysis ongoing
- Investigating sensitivity to g_λ quenching with MARLEY
- Larger detector deployment to start in 2020, design and crystal characterization underway

References

A Ton-Scale NaI Detector

- Larger detector (300+ crystals) would improve charged-current statistics, also measure coherent elastic neutrino-nucleus scattering (CEvNS) on 203Na
- Dual gain base designed to achieve dynamic range for both CEvNS and charged-current signals (3 keV to 55 MeV)
- Each crystal deployed needs to be characterized first, completed for \sim150 crystals so far
- Construction will begin soon, deployment to start in 2020
- See poster #554 for more details on ton-scale detector

Fig. 1. Neutrino-nucleus cross section measurements for low energy terrestrial sources from [1].

Fig. 2. Tank from E-1213 at LAMPF [8].

Fig. 3. Coincident 127Xe decays and 127I de-excitations from [9].

Fig. 4. Waveform showing accumulators configuration

Fig. 5. Backgrounds with and without veto cut

Fig. 6. Neutrino production at the SNS (simplified).

Fig. 7. Energy and timing distribution of neutrinos at the SNS

Fig. 8. Effect of g_λ quenching on calculated cross section, from [3]

Fig. 9. MARLEY energy predictions showing effect of g_λ quenching

Fig. 10. Current design for ton-scale detector

Fig. 11. Expected charged-current signal for a 380kg detector after 3 years of operation.