Measurement of Transverse Kinematic Imbalance in Neutrino-Nucleus Reactions at MINERVA
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Introduction

In neutrino oscillation experiments better understanding of
nuclear effects in neutrino-nucleus interactions is important.
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In case of static nucleon
target it is balanced as per
momentum conservation
— No nuclear effects

Imbalanced
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Complexity of nucleus: momentum-
energy transfer bias the hadron
kinematics. Any imbalance on the
transverse plane is a manifestation
of nuclear effects.

Transverse Kinematic Imbalances

e The initial and final state nuclear effects are probed using the
momentum of the struck neutron and the direction of the u-p
transverse momentum imbalance.

e Convolution of Fermi motion and Intranuclear Momentum

Transfer (IMT) due to FSI, resonance production, 2p2h etc.
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The direction (0ay) of the transverse momentum imbalance is

sensitive to IMT defined as:
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MINERvA made measurements of these nuclear effects via

« the transverse kinematic imbalance between the charged

lepton

* the primary final-state hadron in charged current quasi-elastic

scattering.
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Scintillator tracker

» Phase-space selection for muon (p,, 6,) and proton (pp 6p) momentum and polar

Fine-grained scintillator angle :
17 mmI tracker surrounded by 1.5 GeV/e <p, <10 GeV/e, 0, < 20°
calorimeters
0.45 GeV /e <pp, < 1.2 GeV /e, 6, < 70°
«  MINERVA sits on-axis in the NuMI beam at Fermilab * Michel electron (from pion-muon-electron decay chain) tag to remove pion
« It uses MINOS near detector which serves as a magnetized muon spectrometer. production.
. Completed taklng data both at low energy (LE) and medium energy (ME) run. e Simulation is done based on GENIE - MnvGENIE-v1 (elaStiC bug le) includes RPA

* The Low energy neutrino beam at E,, ~ 3 GeV accumulated: 3.28x10%° POT
Medium energy neutrino beam E, ~ 6 GeV accumulated: 10.61x10?° POT

effect, the 2p2h Valencia model which has been tuned to MINERVA data and the
non-resonant pion production prediction has been modified to agree with
deuterium data.
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Results and Dlscussmn Transverse Binding energy:

* The Ileptonic system provides energy to the

o reeEners /1 hadronic side of the reactions to bring a bound
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£ i -FSI Deceleration o ’;' ®-
8 1sf _%Fse'ggjgpjm // e nucleus.
No nuclear effects. For £ S ey |
1 : 1 E L4 ¢""‘ ° ° ° °
the s1mu1?1t1o.n W}thOUt F * Projection of transverse balance into the reaction
ESl, .the distribution of : ] plane is directly biased by energy required to
Oar is tlat o - s T — remove nucleon from nucleus.
do, (degree)
7 P -J Y B L L A B LA
Y ¥ T evenomnd ] R x1073° 3.28 x 10%° POT
pr| < |pp| ¢ 7 e S PSR p—
g /ol ol assopton. S B e, no f Sf. neg  MnvGENIE-v1LO.1
. ~ My e * ge, inelastic
proton is decelerated 3 UGN £ °F  mmae other FSI
by nuclear effects and & > 5E - 2p2n LE
) —=res,di d oth
effects of FSI are seen 2 | L 4 res,cis and other
at Sa > 90 c 5 3
% 0.2 0.4 06 08 1 7 5
p_(GeV/c) 08.4
)
= 1
. .. . . S :
* The nominal GENIE prediction with decelerating S,

proton FSI does not contribute greatly to the transverse ~0.6 —04 02 0 02 0.%

forward boosting region dar <~ 90° where accelerating

proton FSI are the dominating IMT. * Opyy is positive if the proton has gained momentum

_ . along transverse muon momentum direction
* Such accelerating FSI are responsible for the QE peak

distortion beyond 5-¢ total uncertainty at the lowest p,,. , A shift in the QE peak along the y-direction shows

the sensitivity to the interaction energy.
* The overall MnvGENIE-V1 describes data well.
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* Ongoing: Along with making 1-D

measurements, double differential f §EiE§§§:§
cross-section of TKI variables as a £ ..t I~ B Eé{{f%‘fkgd :
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* QE peak distortion is observed in
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Future medium energy MINERVA analysis with higher statistics will
study these TKI variables and probe asymmetry in more detail.
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Summary:

 The study of TKI helps to disentangle the nuclear effects in neutrino-nucleus interactions which is most relevant for oscillation measurements.
* Study of these variables will help to develop more accurate nuclear models with precision measurements and new techniques that disentangle the nuclear mess.
* Better modeling of the binding energy can reduce bias in neutrino energy reconstruction and these observables can be applied in current and future experiments to

better constrain nuclear effects.
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