Neutrino-Induced Neutron Detectors at the Spallation Neutron Source
Jacob Daughettee, on behalf of the COHERENT Collaboration
University of Tennessee
Neutrino 2020

Neutrino-Induced Neutrons
Neutrino-nucleus interactions can yield excited nuclear states which may decay via the emission of neutrons:

\[\nu_e + ^{208}\text{Pb} \rightarrow ^{208}\text{Bi}^* + e^- \] (CC)
\[\nu_x + ^{208}\text{Pb} \rightarrow ^{208}\text{Pb}^* + \nu_x \] (NC)

- Neutrino-induced neutrons (NINs) are a potential background for experiments searching for nuclear recoils from coherent neutrino scattering or dark matter at pion decay-at-rest sources.
- NIN production on lead is a detection channel for galactic supernovae in the HALO experiment [1].
- Highly relevant to r-process nucleosynthesis in supernovae [2].
- This process has yet to be observed and suffers from large theoretical uncertainty.

COHERENT Experiment & NINs

- The Spallation Neutron Source at Oak Ridge National Laboratory is also powerful neutrino source!
- 1.4 MW proton beam delivered to target at 60 Hz in 400 ns FWHM bunches.
- First measurement of coherent elastic neutrino-nucleus scattering (CEvNS) [3].
- COHERENT seeks to measure CEvNS on multiple nuclear targets.
- Use of Pb shielding in detectors = large target mass for NIN production.
- Neutron scatters may mimic neutrino signal.

Neutrino Cubes

From left to right: Detector with water shielding; shielding remove to show muon veto panels; inner detector Pb target with embedded scintillator cells.

- Dedicated NIN detectors deployed on pallets in Neutrino Alley at the SNS.
- Two currently operating detectors featuring a 1000 kg Pb and 700 kg Fe target respectively.
- Liquid scintillator cells embedded in target material search for neutrons matching expected time profile from SNS neutrinos.
- In their present configuration, both detectors feature 2.2 L and 2.1 L liquid scintillator cells.
- Data acquisition triggered via scintillator cell signal in coincidence with SNS protons on target signal.

Calibrations

- Gamma calibrations (^{129}Na, ^{137}Cs, ^{137}Ba) performed approx. twice a year allow for monitoring of photo-multiplier tubes (PMT) over time.
- Simulated spectra are generated for each source and simultaneously fit to calibration data.
- Steady-state background spectra also used to monitor for detector changes.
- Time-tagged ^{137}Cs source gives sample of nuclear recoil events for event discrimination studies.

Analysis Status

- Pb (Fe) detector has been collecting data since 2015 (2017).
- Data quality cuts set; calibrations finalized.
- Machine learning applied to waveform information to improve event discrimination at low recoil energies:

- No theoretical predictions for NIN spectra from pion DAR electron neutrinos (theory focused on SNe neutrinos); use of MARLEY (Model of Argon Reaction Low Energy Yields) to generate predictions for Pb at the SNS.

- Beam-related neutrons represent an important background for NIN analysis; many simulations performed to understand expected energy and timing distributions.

- Results of NINs search in Pb and Fe coming soon!

References

Acknowledgements

COHERENT is supported by and grateful for support from DOE NP and HEP, NSF, NNSA, CNEC, and the Oak Ridge National Laboratory staff.