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CNNs are designed to extract topolgical features from
data. The t-SNE below shows the separation between
the different training categories.

Identified as

The FOM?, summed over contributions from analysis bins i (from 0 to N), is proportional to
our mass-hierarchy sensitivity and factors in an estimated 11 % background uncertainty
(0B) from data-driven corrections using near detector data. Our optimization benchmark
was the trained network used in our 2018/19 oscillation analyses. The new network shows
just over 11 % improvement over 2018/19 CVN.

clustering and identification.
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