The relevance of neutrino-nucleus interaction models in T2K and SuperKamiokande:
ICRR Implementation of the SuSAv2-MEC model in generators and analysis of low-energy nuclear effects
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1. Precise knowledge of » oscillation properties require accurate » — A interaction models 4. SuSAv2-MEC Implementation in MC event generators PRD 101, 033003(2020)

= Exp. systematics in T2K are around a 4% (7%) for v, (v.) reactions . e e Senetvy S 2 The SuSAv2-MEC (1p1h and 2p2h) model has been implemented in GENIEv3 for both (e, ¢’) and CC v, scattering, using pre-computed hadron

and are dominated by flux and v-A cross section uncertainties (3%). a:{"m = — 5% 1% B “‘_TZK . EQH """" h tensors (qo, ¢3). No kinematical restrictions. Use a GENIE'’s bilinear interpolation function to evaluate specific qy, g3 values. Hadron tensors are

PRDI1, 072010(2015). i v 5% £ 2% ° 1 = = initially provided for a few targets (C and O so far, may add others). Can easily scale to other nuclei.

= Oscillation measurements in future experiments (HyperK, DUNE) | .. == >5%+3% “’5: : > Next steps and Work in progress: Implementation of SuSAv2-MEC and ED-RMF (1p1h, 17) in NEUT through pre-computed tables, and also

aim to ~ 1 — 3% systematic uncertainty and determine mass hierarchy = ) 3 — eduivalent :_ E implementing the full code to allow reweighting and calculate systematic uncertainties in oscillation analyses.

and ocp Vio}ation phase. N ““’f”e 280, 339'344(2029). 3 4/ DUNE  exposure! . 2 Imaginary part of nuclear potentials needed for semi-inclusive reactions (joint detection of lepton and hadrons in the FS) to produce FS absorption,

»h{AI‘ red;Ctl_On (])Df 2? would 1.mpr(zvle CPV sens1:1\§ty cfir(f)m 3‘7 t(i bo [‘b o ‘_ N ‘ 3_ N A y \ — i.e., flux lost into the unobserved channels, can be switched on/off and used to test and compare with intranuclear cascade effects in generators.

while reducing by two experimental exposure ™ Need for develop- 65~ 40350 500 000 1200 1300 A 3

ment and implementation of sophisticated v — A models in MC gen- , — , e Comparison between 1p1h+2p2h models in GENIE: Comparison of 2p2h contributions in GENIE:

erators. prXiv:1512.06148 iphysics.ms-aetl] ;  prXiv:1607.08004 hep-ex] Valencia model (Nieves) vs. SuSAv2-MEC CCOr predictions SuSAv2-MEC vs. Valencia model (Nieves)

The implementation of more accurate models can help to understand v/ asymmetry, to improve hadron detection efficiency, the characterization o s C‘I"S(E’n}l‘- o o et IC"*'I’{E‘L:} s New SuSAv2 implementation : Nieves implementation .

of FS particles or the extrapolation from the usual '*C target analysis to other nuclei (*°0 [T2K ND280 upgrade], *°Ar, etc.) Tt 1pth | - Lol | | } g W = I S T T T T T u..
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2. Relativistic Mean Field Theory and SuperScaling Approach: RMF, ED-RMF and SuSAv2 models S L + J‘I-hL ped 3 e e E &

@ Relativistic Mean Field (RMF): Fully relativ. shell model with accurate description of nuclear dynamics and | &wr 3| gg 80+02 IIIIIIIIIIIIIIII 0'40%%03 e 00_*_12‘3 5200 400 600 600 '1'o'ob'1'z'o'o'1'4'00'1'65?&8863}300 . : %0 200 400 600 800 '1'00'0‘1'2[0’01'4'06'155?@3@0 w0

FSI. Energy-independent (EI) nuclear potentials fitted to nuclear matter properties = good description of (e, ¢') T sushval i .‘ p (GeV) p, (GeV) = : 3

and v-A data at low and intermediate kinematics, fulfiling the (e, €’) data scaling behavior, while other models 3 -t TN ag  eestealtd 1 O ag» 94 <cosB) <098 — 5 S skt | n_ B el i I

fails. EI RMF potentials are too strong to describe FSI at high kinematics where RPWIA (“RMF w/o FSI, final- £ 0'45_ N b T ot | Ty S E | 74 E 45| SuSAV2MEC : g 45 Nieves

state plane waves”) does a better job. 2t \ e 5; o N 5; valencia model > 3;' - ;Z:gzh : E 3.; o

& SuSAv2 (SuperScaling Approach v2,[PRCI0, 035501 (2014)|; PRD94, 013012 (2016)) builds a trade-off between =~ f'— v O | + : : g LT | t 3

RMF and RPWIA models (through a combination of RMF and RPWIA scaling functions), but low-energy nuclear = 4 - ooV S Y osk - % + 1 ) 2'2 | r : R

effects are not properly included at very low kinematics (< 50 — 100 MeV). g e I e B % _ % _+'LI : glﬁ ' E | j 151

v ED-RMF: introduces Energy-Dependent potentials (weighted by SuSAv2 results at intermediate-high kinemat- .. ot experimental (e,\i/) sealing data on 12C with 8l + --------- S — 8 e ° io.; rj : ﬂ; 0.5

ics (Iv > 100MeV)) to the RMF to keep the strength for slow nucleons while making RMF potentials softer for e e s e o e eation about the e Bo 02 A : o © 0561 02 03 04 ! o

high nucleon momenta, thus solving SuSAv2 drawbacks at very low energies and RMF ones at high kinematics.  cear dynamics of the process. s i ok LTl |

5 ' 5 y 5 5 o (RUClear) > Valencia (Nieves) 2p2h model produce more forward-angle (low Q?) events than SuSAv2-MEC, in contrast to higher kinematics (see also ¢s3-

RMF-based models could help to reduce low-energy and nuclear-medium systematics as well as to reveal C/O /=7~ Teingle nude:f(erzgggsﬂear) restrictions). On the contrary, SuSAv2-MEC 1p1lh predictions (RMF-based) are slightly higher at low kinematics than Valencia ones (LFG).

differences related to the corresponding binding energy (£3) and shell effects, FSI, Coulomb distortions, etc. " = Differences in np/pp separation of the FS 2p2h nucleon pairs are mostly related to the treatment of direct/exchange interference terms (absent in

See larXiv:1912.10612 [nucl-th] for details about SuSAv2 (1p1h=QE), SuSAv2-MEC (1plh and 2p2h), SuSAV2- ') = ks <d96d‘*’)ewp Nieves model) — strongly affects np/pp ratio by a factor ~ 2 (PRC 94, 054610(2016)) = Implications in nucleon multiplicity and hadron E,..,
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inelastic, RMF and ED-RMF (1plh, CCl7) models.
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