

New limit from the search for 0νββ-decay of ¹⁰⁰Mo with the CUPID-Mo experiment

http://cupid-mo.mit.edu 7 countries, 15 institutions, 110 scientists

Poster #419

#374 M. Zarytsky, #382 T. Dixon, #404 D. Poda, #418 P. Loaiza, #448 B. Welliver, #525 V. Singh

B. Schmidt on behalf of the CUPID-Mo collaboration Lawrence Berkeley National Laboratory, Berkeley, USA - beschmidt@lbl.gov

The CUPID-Mo experiment

- A cryogenic calorimetric search for $0\nu\beta\beta$ in ¹⁰⁰Mo at the Laboratoire Souterrain de Modane (France)
- 20 Detector modules with scintillating ~210 g Li₂MoO₄ crystals and associated light detectors (LD)
- $(97.0 \pm 0.2)\%$ enriched in ¹⁰⁰Mo

CUPID-Mo at Neutrino 2020, see also Posters:

NTD-Ge sensors on both the LD and Li₂MoO₄ crystal

- High Q-Value: $Q_{BB} = 3034.4 \text{ keV}$
- Efficient α discrimination better than 1:1000 through relative scintillation light yield [EPJ-C 80, 44, (2020)]

Example of α discrimination for a detector after 200 days of physics data from March 2019 – April 2020; the LD is cross-calibrated against the Li_2MoO_4 energy scale for β/γ events. α 's emit only ~20% of light, compared to β/γ .

The blinded data

- 2.17 kg x yr physics data analyzed so far, 19/20 detectors selected for the analysis
- Analysis eff. $\varepsilon = (90.5 \pm 0.4 \text{ (stat.)} ^{+0.9}_{-0.2} \text{ (syst.)}) \%$

Important step in demonstration of the detector technology for CUPID

Individual ²⁰⁸TI resolutions

 Perform a simultaneous unbined extended maximum likelihood fit to the 2615 keV peak in U/Th calibration data to extract Channel, Dataset based resolutions

Resolution scaling

 Estimate a global resolution scaling factor to relate the 2615 keV U/Th calibration resolution to the resolution at the Q-value in physics data

ROI selection for 0νββ

- Optimize Channel-Dataset based ROI in S/B Likelihood space, maximizing the mean limit setting sensitivity for a final exposure of 2.8 kg x yr
- Take into account energy scale uncertainties in ROI

Limit setting

- Perform Bayesian counting analysis in signal ROI and side-bands of the $0\nu\beta\beta$ analysis region
- Exposure weighted mean of $0v\beta\beta$ selection efficiency (containment & analysis efficiency): 65%

Uncertainties in isotopic fraction, containment, & efficiency included as nuisance parameters on global and DS level

Energy scale bias

- Estimate a global energy scale bias from the position of gamma peaks in physics data versus Literature
- Check consistency in time through calibration data

