ProtoDUNE analysis: Pulser study of new sticky code interpolation

ProtoDUNE sim/reco

David Adams BNL December 12, 2018

Pulser signals

Cold electronics provide the option to inject pulses

- At regular intervals, injected voltage is raised and then lowered
 - Controlled with 6-bit DAC → 64 levels
 - \circ Fairly linear with step size V_S = 18.75 mV
- Capacitively coupled to preamp input
 - C = 183 fF
- Voltage change corresponds to fast charge collection
 - Step size is $Q_s = (183 \text{ fF}) \times (18.75 \text{ mV}) = 3.43 \text{ fC} = 21.4 \text{ ke}$
 - This is about 1 MIP
 - Prefer something smaller?

Signal may be generated in either of two places

- Internal: signal generated in the preamp ASIC
 - \circ $\,$ Input voltage has significant offset that varies from ASIC to ASIC
 - $_{\odot}$ $\,$ Variations are a large fraction of the step size
- External: signal generated on the FEMB
 - Little or no offset: for DAC setting S, $Q = S \times Q_S$

ProtoDUNE data

Some pulser amplitude scans have been taken with protoDUNE

- Amplitude scan means the voltage DAC is varied
 - New run started for each DAC setting (0,1, 2, ...)
- All taken with internal pulser
- Aug 9-21
 - Detector filling
- Sep 21
 - Before baseline shift to fix "ledge effect"
- Oct 25
 - \circ $\,$ Cathode HV off, anode and grid on
 - After baseline shift (Oct 11)

I have requested more data ASAP

- Amplitude scan with all HV off and all HV on
 - Both internal and external pulser (4 scans total)
- Later multiple scans with varying timing offset

Raw ADC for TPC plane 0z (APA 3: US-RaS)

Pulser studies

The pulser data can be used for many important studies

- Resolution
 - For a given amplitude setting, measure how the height and area of the processed signal vary
- Today
- RMS, tails, etc.
- Area measurement directly applicable to collection signals from tracks
- At different stages and with different processing options
 - Pedestal evaluation, sticky code mitigation, tail correction, deconvolution
- Gain calibration
 - Processed signal height or area vs pulser amplitude provides gains
 - Also find the range of (roughly) linear response for each channel
 - ADC and preamp may restrict this range
- Gain nonlinearities
 - Expect signal to be the same for each tick along the pulse
 - Use tickmod = tick%497 to get a finer mapping of gain vs input charge
- Sticky codes
 - Use tickmods to search for sticky codes as was done for pedestal

Tools

There are some tools useful for studying pulser data

- AdcRoiViewer ۲
 - Waveform for each ROI (pulser signal and more)
 - Includes option to fit with CE waveform
 - 0
 - Summary histograms of ROI properties Area, fitted height, shaping time, ... Summary params (e.g. RMS) vs. channel 0
 - Under continuing development 0
 - Many changes over last week
- AdcTickModViewer
 - Histograms of ADC counts filled separately for each tickmod
 - Use mean for gain studies
 - Look at tails and sticky codes

Rough calibration

Rough height calibration

- ProtoDUNE data taken with gain 14 mV/fC
 - Pulse height for rapid charge injection
- Nominal shaping time is 2 µs—actual 4.35 ticks with variation
- ADC response is 3.0 ADC/mV with variation
 - Combining these, the rapid pulse gain is 42 ADC/fC = 6.7 ADC/ke
 - I.e. pulse height calibration is 150 e/ADC

Area calibration

- Detector signals do not have rapid charge injection
 - See example waveforms on following pages
- Best estimate of FE input charge is presumably the area in an ROI
- Rapid pulse area = 1.269 × Height × (Shaping time)
 - From CE response function checked with pulser data
- Nominal FE-ADC calibration is 27.2 e/(ADC-tick)
 - Channel variations from ADC response, preamp gain and shaping

Sticky code mitigation

Search for stick codes described previously

- I looked at waveforms for all channels
- Record (in fcl) codes that look sticky
 - Only in pedestal region

Mitigation is applied to those codes

- For release v07_12_00 and earlier, this was linear interpolation
 - Between nearest good samples below and above
- New in v07_13_00 (now improved), constant-curvature interpolation
 - I.e. quadratic function of tick
 - Still required to pass through two nearest samples
 - Choose curvature to come close to the second closest good sample below and above the mitigated sample
 - Could use 3rd order polynomial and cross both but too many wiggles
 - Last release, choose equally close to the 2nd nearest samples (call this ccv1)
 - » But sample in a signal can push the other side away from the baseline
 - Now weight the 2nd samples to favor one close to the 1st sample on its side

Analysis

Use AdcRoiViewer to study resolution

- Without and with ADC mitigation
- Results shown for old (linear interpolation) and new mitigation

Channel summary plots for APA3z

Fit height unmitigated

Fit height with new mitigation

Fit height with ccv1 mitigation

Fit height with old mitigation

Signal area unmitigated

Signal area with new mitigation

Signal area with ccv1 mitigation

Signal area with old mitigation

Fit chi-square unmitigated

Fit chi-square with new mitigation

Fit chi-square with ccv1 mitigation

Fit chi-square with old mitigation

Channel summary plots for FEMB 302x

D. Adams, BNL ProtoDUNE sim/reco ProtoDUNE analysis: Resolution from pulser data December 12, 2018 24

Fit height unmitigated

Fit height with new mitigation

Fit height with old mitigation

Signal area unmitigated

Signal area with new mitigation

Signal area with old mitigation

Fit chi-square unmitigated

Fit chi-square with new mitigation

Fit chi-square with old mitigation

ROI summary plots for FEMB 302x

D. Adams, BNL ProtoDUNE sim/reco ProtoDUNE analysis: Resolution from pulser data December 12, 2018 34

Height unmitigated

D. Adams, BNL

ProtoDUNE sim/reco

ProtoDUNE analysis: Resolution from pulser data

Height with new mitigation

Height with old mitigation

D. Adams, BNL

ProtoDUNE analysis: Resolution from pulser data

ROIs for channel 2142

Unmitigated

New mitigation

Old mitigation

ROIs for channel 2128

Unmitigated

New mitigation

44

Old mitigation

ROIs for channels 2151

Unmitigated

New mitigation

Old mitigation

Comments

Sticky code mitigation

- New interpolation algorithm has been introduced
- Still interpolates between the two nearest good codes
- Uses fixed curvature instead of linear (curvature = 0)
- Curvature evaluated from the 2nd nearest good codes
 - $_{\odot}$ $\,$ Weighted to favor the side where sign changes least
- Change is in dunetpc and will go into next release if OK here

Pulser resolution study

- Shows sticky code mitigation improves resolution
 - Only looked at APA3x
 - Biggest effects in FEMB 302 where codes are sticky
- Better job with new interpolation algorithm
- Pulser data is useful for tuning and evaluating performance of steps in data preparation

Future

Future pulser resolution studies

- Check effect of mitigation on other APA planes
- Look at other dataprep steps
 - Timing mitigation
 - Tail correction
 - Deconvolution
- Try out other ideas for dataprep
 - Nice to have a quantitative measure of performance in signal region

Search for sticky codes in signal regions

- Use pulser tickmods to get better coverage
- Like also to have data with pulser timing offsets to improve coverage