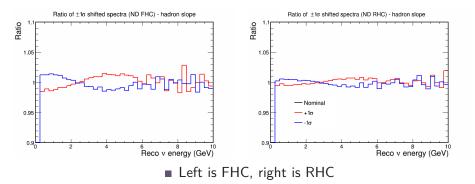


Detector systematics update

Seb Jones

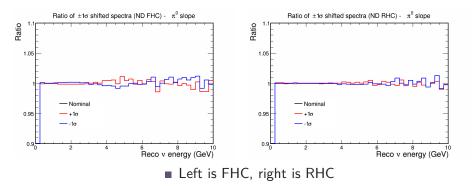
Department of Physics & Astronomy University College London

December 17, 2018

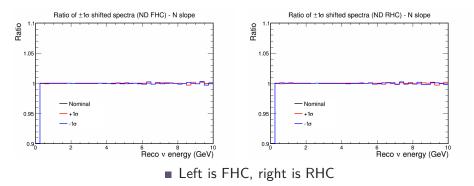


Linear energy scale systematics

- Previous energy scale systematics $\frac{\sigma_E}{E} = \text{constant}$, for charged hadrons, π^0 s, neutrons
- Now have systematics such that $\frac{\sigma_E}{F} \propto E$ for each of above species
 - Specifically, $\sigma_{E_{\nu,reco}} = 0.01\sigma \times E_{\nu,reco} \times \frac{E_p}{E_{\nu}} \times E_p$ where E_p is the energy of particular category of particle and E_{ν} is true neutrino energy
 - \blacksquare This is such that a 1 GeV proton will have an error on its energy of 5%
 - Exact scale can be altered if shift is too large/small

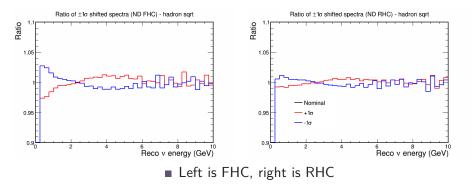


Results: Charged hadrons



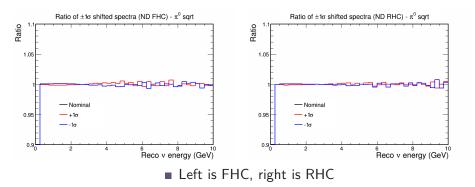
Results: π^0 s

Results: Neutrons

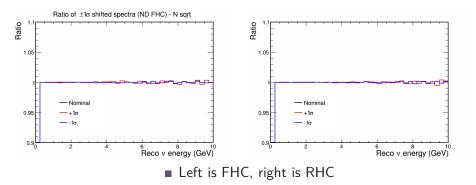


Inverse square root scale energy systematic

- Now, introduce syst such that $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$ for each of the previously mentioned categories of particles
 - Specifically, $\sigma_{E_{\nu,reco}} = 0.01\sigma \times E_{\nu,reco} \times \frac{E_p}{E_{\nu}} \times \frac{1}{\sqrt{E_p}+1}$ where E_p is true energy of a particular type of particle and E_{ν} is true neutrino energy
 - E.g. for 1GeV proton, have $\sigma_E = \frac{5}{\sqrt{2}}\%$
 - Exact scale can be altered if shift is too large/small


UCL

Results: Charged hadrons



Results: π^0 s

Results: Neutrons

Reworking of energy scale systematics

- Previously, for various particles species had 3 systematics correlated part (between FD & ND), uncorrelated ND, uncorrelated FD
- Had the effect of causing the fitter to find local minima
- Have now replaced the two separate ND & FD systs with a single anti-correlated systematic