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EVENT GENERATOR

Tool for producing data, not knowing measurements beforehand.

Better “theory pseudodata” — Better “real data” analyses.
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REALISTIC MODELING OF COLLISIONS

OF COMPOSITE OBJECTS REQUIRES:

) e precise hard scattering
] e accurate radiation cascade

(
e extensive modelling of interactions of

multiple constituents & soft processes
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Precision fixed-order perturbative calculations and their embedding
in GPMCs. Allows for event generation & eases data comparison.
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Precision pQCD in event generators
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Multi-leg processes are particularly important backgrounds for searches.
Higher-order precision allow setting indirect bounds on new physics.

Event generators need to deliver on both, for arbitrary processes =
Merging and Matching.
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Precision pQCD records

NLO QCD+PS merging is the state-of-the-art.
Available in SHERPA, PYTHIA, HERWIG.

Frontier: NNLO QCD+PS simulations.  Several
color-singlet processes available

e UN2LOPS in SHERPA. News: DIS

e NNLOPS in POWHEG-BOX. News: W+w~—
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Less simple procs challenging w/o better understanding of PS and resummation.
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Precision event generator error budgets

Any precise calculation is only
as good as its error budget.

Many variations can contribute:
¢ Fixed-order scale variations

o Matching scheme

© Shower construction

© PS phase-space constraints

& All-order PS scale variations

o Non-perturbative variations

HERWIG especially active here.
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Electroweak corrections
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Important for even simple observables! Automation allows to assess formally subleading

terms. Intense efforts. Many processes in SHERPA+OPENLOOPS & AMC@NLO
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Resonances in NLO+PS

Resonances add many subleties to NLO+PS:

¢ need robust way to define
¢ need adjusted efficient IR regularisation
© need PS to respect resonance properties

¢ need to define inclusive cross-section if reals
contain new resonances

1801.03944: Top mass uncertainties
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— Resonance histories
— Resonance-aware subtraction
— Resonance-aware matching
— Diagram subtraction

arXiv:1809.10650: NNLO QED, NLO EW for my,

1907.04898: Automated diagram subtraction

Gluino pair production at 13 TeV LHC
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Parton showers are crucial to model jet structure and evolution.
NLO+PS only as good as the PS. PS accuracy and uncertainties far from
obvious — intense renewed activity.
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Parton shower approximations

PS aims at solving evolution equations
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Current PS are spin-averaged, large-N, &
recover soft/collinear single real-emission
pattern = Large uncertainties. £
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Several groups work on assessing “PS accuracy” by constructing testing
baselines (arXiv:1711.03497, arXiv:1805.09327, arXiv:1904.11866)
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Spin in parton & dipole showers

When improving the PS, we need sensible baselines.
— PS should hit all QCD divergences in differential distributions,
even integrable ones oc 1 — 2 cos? ¢ — Need spin correlations!

New: Collins-Knowles algorithm in % f —nw
HERWIG § and dipole PS e et
o Keep track of spin-density matrix o
and helicity amplitudes.

o Keep track of splitting’'s Lorentz

frame & remember kinematic recoils.

[EEEY b

— Better description of sensitive
data, e.g. azimuthal separation of the
charged leptons in tt events

MC/Data
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Parton showers and Coulomb gluons

Proposition: Better parton showers require an overhaul of the formalism.
— Guidance from evolution of color states & virtual Coulomb gluons exchanges?

DENSITY OPERATORS

D(*)

Nagy and Soper (latest: arXiv:1705.08093)
olJ] = (UOUWF, ui)Uy (1, w3 F (u3)10)

with matrices U (insert reals) and Uy (in-
serts virtuals) acting on statistical states. Ba-
sis of DEDUCTOR, used to resum threshold logs
(arXiv:1711.02369)

AMPLITUDE-LEVEL EVOLUTION

Forshaw, Platzer et al. (arXiv:1905.08686)

do1 = Tr[quu_DlVthQ|M><M|VqT1LQDJ1rVJlI1L]

with matrices V' and D
calculated at amplitude
level. Maybe intuitive
link to EFT?
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Parton shower definitions from higher-order calculations

To define a sensible baseline for multi-emissions rates, need to know the
result beyond single-emission @ lowest order.

= Don't guess, calculate: Work backwards after performing & dissecting
(N)NLO calculations. Define NLO evolution kernels as

/ dt /dz l V+I+C )O(<I>B)+fd<I>+1(R—S)(£,<I>+1)(’)(<I>R)
ANLo thtl

i.e. fully local NLO calculation in exponent of Sudakov factor.
Then derive LO shower from requirement of fully local subtraction.
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Parton showering: Results beyond lowest order

Lessons from performing NLO calculation
» Triple coll. sectors require spin correlations in LO PS. Small effect.

» Double soft sectors require color correlations in LO PS. Small effect.
» 4-mom. shifts from on-shell int. states has to be compensated.
» Recoil compensation & genuine NLO correction almost balance out.
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= Realistic uncertainties. Implemented for SHERPA and PYTHIA.
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QCD is more than just perturbative calculations: Soft- and non-
perturbative effects make up the bulk of cross sections at hadron col-
liders. The LHC is an excellent QCD discovery machine!

15/21



Color reconnection and the onset of parton-hadron conversion
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Q: Which color potentials between
partons drive hadrons formation?

pQCD preconfinement is partial answer:
Partons from one interaction that are
close in momentum space should “fuse”
into pre-hadrons.

= Use pQCD dipole formula for soft
anomalous dimensions as ansatz to check
this idea also e.g. in presence of MPI at
the LHC (see arXiv:1808.06770)
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Space-time picture of fragmenting strings

In LHC collisions, space is packed ¢ °J
with partons — Gives densely packed ‘
hadrons + long-range correlations. .

— Hard QCD
— Soft QCD

— Starting point for possible subse-
quent collective effects (QGP?).

— arXiv:1808.04619: Develop dynami-

: :
cal space-time picture of hadroniza- A = “~_. . N 'V

tion to determine this starting point




Collective effects and strings

Collisions at LHC are packed
with color/hadrons.

Color reconnection: pQCD-
inspired ansatz for non-
perturbative color packing.

Space-time picture:  Hadron
packing due to individual
strings breaking.

But string density high as well
— String-string interactions.
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Goal: Microscopic model of collective
effects at LHC
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Collective effects

The ridge in Z-tagged events, N, > 110
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CMS 2010: Long-range azimuthal multiplicity correlations show “ridge".
ATLAS 2017: Similar “ridge” in Z-boson events (ATLAS-CONF-2017-068).
Repulsive string interactions reproduce the effects!
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Heavy ion cross sections

High-multiplicity pp collisions show extreme QCD behavior, similar to

heavy ion collisions.

= Check how close with new heavy-ion capabilities!

In PYTHIA, pA and AA collisions
are modeled through ANGANTYR:

o Correlated generation of multiple
nucleon-nucleon collisions.

o Full final state for each subcolli-
sions & overall collision

o Event-by-event fluctuations of
nucleon wavefunctions.

Encouraging description of multi-
plicity distributions!
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Summary

» Improving the fixed-order perturbative precision of generators:
NNLO+PS available for several color-singlet proc®, DIS first NNLO+PS
w/ final-state partons at Born level.

NLO+PS consolidated by detailed uncertainty studies, LO+PS at
extreme multiplicity.
Inclusion of NLO EW effects in full swing.

» Developments to define parton showers more rigorously:
Treatment of subleading color & spin important, even for
lowest-order PS
Amplitude-based ideas, role of threshold corrections discussed.
Can systematically correct PS through fully differential NLO
calculation in exponent.

» New momentum in non-perturbative physics:

Improved models of complete cross section and color reconnection.
Exciting ideas in non-perturbative QCD phenomenology and

collectivity in pp/heavy-ion collisions.
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