Recent Developments in Event Generators

QCD@LHC 2019, Buffalo, July 19, 2019 Stefan Prestel (Lund)

EVENT GENERATOR

Tool for producing data, *not knowing* measurements beforehand.

Better "theory pseudodata" \rightarrow Better "real data" analyses.

REALISTIC MODELING OF COLLISIONS OF COMPOSITE OBJECTS REQUIRES:

- precise hard scattering
- accurate radiation cascade
- extensive modelling of interactions of multiple constituents & soft processes
- detailed hadronization and decay

Precision fixed-order perturbative calculations and their embedding in GPMCs. Allows for *event generation* & eases data comparison.

Precision pQCD in event generators

Multi-leg processes are particularly important backgrounds for searches. Higher-order precision allow setting indirect bounds on new physics.

Event generators need to deliver on both, for arbitrary processes \Rightarrow Merging and Matching.

NLO QCD+PS merging is the state-of-the-art. Available in SHERPA, PYTHIA, HERWIG.

Frontier: NNLO QCD+PS simulations. Several color-singlet processes available

- UN²LOPS in SHERPA. News: DIS
- NNLOPS in POWHEG-BOX. News: W^+W^-

Less simple procs challenging w/o better understanding of PS and resummation.

Precision event generator error budgets

Plots from arXiv:1810.06493

Any precise calculation is only as good as its error budget.

Many variations can contribute:

- Fixed-order scale variations
- ◊ Matching scheme
- Shower construction
- ◊ PS phase-space constraints
- All-order PS scale variations
- Non-perturbative variations

HERWIG especially active here.

Electroweak corrections

NLO EW corrections to inclusive observables \sim NNLO QCD. But distribution quite different!

EW corr. combined with PS \sim NLO QCD case, but often, weak real-emission can be neglected.

Important for even simple observables! Automation allows to assess formally subleading terms. Intense efforts. Many processes in SHERPA+OPENLOOPS & AMC@NLO

Resonances in NLO+PS

Resonances add many subleties to NLO+PS:

 need robust way to define "resonance"
 need adjusted efficient IR regularisation
 need PS to respect resonance properties
 need to define inclusive cross-section if reals contain new resonances

- \rightarrow Resonance histories
- \rightarrow Resonance-aware subtraction
- \rightarrow Resonance-aware matching
- \rightarrow Diagram subtraction

Parton showers are crucial to model jet structure and evolution. NLO+PS only as good as the PS. PS accuracy and uncertainties far from obvious \rightarrow intense renewed activity.

Parton shower approximations

PS aims at solving evolution equations

$$\frac{\mathrm{d}f_a(x,t)}{\mathrm{d}\ln t} = \sum_{b=q,g} \int_0^1 \frac{\mathrm{d}z}{z} \, \frac{\alpha_s}{2\pi} \left[P_{ab}(z) \right]_+ f_b\left(\frac{x}{z},t\right)$$

by iteratively constructing states distributed according to $\left[P_{ab}(z)\right]_+$

Current PS are spin-averaged, large- N_c & recover soft/collinear single real-emission pattern \Rightarrow Large uncertainties.

Several groups work on assessing "PS accuracy" by constructing testing baselines (arXiv:1711.03497, arXiv:1805.09327, arXiv:1904.11866)

When improving the PS, we need sensible baselines. \rightarrow PS should hit all QCD divergences in differential distributions, even integrable ones $\propto 1 - 2\cos^2 \phi \rightarrow$ Need spin correlations!

New: Collins-Knowles algorithm in HERWIG \tilde{Q} and dipole PS

Keep track of spin-density matrix and helicity amplitudes.
Keep track of splitting's Lorentz

frame & remember kinematic recoils.

 \rightarrow Better description of sensitive data, e.g. azimuthal separation of the charged leptons in $t\bar{t}$ events

Parton showers and Coulomb gluons

Proposition: Better parton showers require an overhaul of the formalism. \rightarrow Guidance from evolution of color states & virtual Coulomb gluons exchanges?

To define a sensible baseline for multi-emissions rates, need to know the result beyond single-emission @ lowest order.

 \Rightarrow Don't guess, calculate: Work backwards after performing & dissecting (N)NLO calculations. Define NLO evolution kernels as

$$\Delta_{\mathsf{NLO}}(t_0, t_1) = e^{-\int_{t_1}^{t_0} \frac{dt}{t} \int d\tilde{z} \left[\left(\mathbf{V} + \mathbf{I} + \mathbf{C} \right) (\tilde{z}) \mathcal{O}(\Phi_B) + \int \mathrm{d}\Phi_{+1} (\mathbf{R} - \mathbf{S}) (\tilde{z}, \Phi_{+1}) \mathcal{O}(\Phi_R) \right]}$$

i.e. fully local NLO calculation in exponent of Sudakov factor. Then derive LO shower from requirement of fully local subtraction. Lessons from performing NLO calculation

- Triple coll. sectors require spin correlations in LO PS. Small effect.
- Double soft sectors require color correlations in LO PS. Small effect.
- 4-mom. shifts from on-shell int. states has to be compensated.
- Recoil compensation & genuine NLO correction almost balance out.

 \Rightarrow Realistic uncertainties. Implemented for SHERPA and PYTHIA.

QCD is more than just perturbative calculations: Soft- and nonperturbative effects make up the bulk of cross sections at hadron colliders. The LHC is an excellent QCD discovery machine!

Color reconnection and the onset of parton-hadron conversion

Q: Which color potentials between partons drive hadrons formation?

pQCD preconfinement is partial answer: Partons from one interaction that are close in momentum space should "fuse" into pre-hadrons.

 \Rightarrow Use pQCD dipole formula for soft anomalous dimensions as ansatz to check this idea also e.g. in presence of MPI at the LHC (see arXiv:1808.06770) In LHC collisions, space is packed with partons \rightarrow Gives densely packed hadrons + long-range correlations.

 \rightarrow Starting point for possible subsequent collective effects (QGP?).

 \rightarrow arXiv:1808.04619: Develop dynamical space-time picture of hadronization to determine this starting point

Collisions at LHC are packed with color/hadrons.

Color reconnection: pQCDinspired ansatz for nonperturbative color packing.

Space-time picture: Hadron packing due to individual strings breaking.

Attraction. Repulsion - Shoving - Ropes

But string density high as well \rightarrow String-string interactions.

Goal: Microscopic model of collective effects at LHC

Collective effects

CMS 2010: Long-range azimuthal multiplicity correlations show "ridge". ATLAS 2017: Similar "ridge" in Z-boson events (ATLAS-CONF-2017-068). Repulsive string interactions reproduce the effects! High-multiplicity pp collisions show extreme QCD behavior, similar to heavy ion collisions.

⇒ Check *how close* with new heavy-ion capabilities!

In PYTHIA, pA and AA collisions are modeled through ANGANTYR:

 Correlated generation of multiple nucleon-nucleon collisions.
 Full final state for each subcollisions & overall collision
 Event-by-event fluctuations of

nucleon wavefunctions.

Encouraging description of multiplicity distributions!

Summary

Improving the fixed-order perturbative precision of generators: NNLO+PS available for several color-singlet proc^s, DIS first NNLO+PS w/ final-state partons at Born level. NLO+PS consolidated by detailed uncertainty studies, LO+PS at extreme multiplicity. Inclusion of NLO EW effects in full swing.

Developments to define parton showers more rigorously: Treatment of subleading color & spin important, even for lowest-order PS Amplitude-based ideas, role of threshold corrections discussed. Can systematically correct PS through fully differential NLO

calculation in exponent.

New momentum in non-perturbative physics:

Improved models of complete cross section and color reconnection. Exciting ideas in non-perturbative QCD phenomenology and collectivity in *pp/heavy-ion* collisions.