

Charm-quark Yukawa Coupling in $h ightarrow c ar c \gamma$ at LHC

Xing Wang University of Pittsburgh

QCD@LHC 2019, Buffalo, NY July 16, 2019

Tao Han, XW, JHEP 1710 (2017) 036, [arXiv:1704.00790] Tao Han, Benjamin Nachman, XW, PLB 793 (2019) 90-96, [arXiv:1812.06992]

Higgs Couplings

- All 3rd-gen Yukawa couplings observed with 5σ .
- Consistency check of the SM.

2nd-Gen Yukawa

- Confirm the Higgs mechanism.
- $h \rightarrow \mu^+ \mu^-$ at 9σ at HL-LHC.
- $h \rightarrow c \bar{c}$ has large BR but difficult at hadron colliders.

Lepton colliders like ILC/CEPC are the best place. ~O(%)

3

Charm Yukawa at LHC

- $pp \to Zh \to (\ell\ell) (c\bar{c})$
 - c-tagging required.
 - Best chance so far, ~3 times of the SM Yukawa. ATL-PHYS-PUB-2018-016
 - Degenerate with $h \to b \overline{b}$
- $h
 ightarrow J/\psi \, \gamma
 ightarrow \ell \ell \gamma$ Bodwin et al. arXiv:1306.5770
 - Clean final state
 - Tiny BR~10-7.

.....

- Less sensitive due to vector meson dominance, ~ 50 times.
- $h
 ightarrow c \bar{c} \gamma$ (this talk) Han, XW, arXiv:1704.00790 Han, Nachman, XW, arXiv:1812.06992

arXiv: 1503.00290, 1507.02916, 1606.09621, 1606.09253, 1609.06592, 1611.05463, 1705.09295

$h \to c \bar{c} \gamma$

* QED radiation at $\mathcal{O}(y_f^2 \alpha)$

- ^(f) Abbasabadi et al. hep-ph/9611209
- No Yukawa couplings.

(e)

* Chirality-conserving.

- Photon helpful for trigger --- ggF.
- Down-type quark suppressed by Q_f^2 .

Is $h \to c \bar{c} \gamma$ Doable at LHC?

- Decay products are soft $p_T \sim \mathcal{O}(10 \text{ GeV})$
- Overwhelming QCD background from $pp \rightarrow jj\gamma, jjj$
- Not all data recorded at LHC.

pp collision @40 MHz \Rightarrow L1 trigger @100 kHz \Rightarrow HLT @1 kHz

• Poor resolution & no flavor-tagging at L1 trigger.

Is $h \to c \bar{c} \gamma$ Doable at LHC?

- Decay products are soft $p_T \sim \mathcal{O}(10 \text{ GeV})$
- Overwhelming QCD background from $pp
 ightarrow jj\gamma, jjj$
- Not all data recorded at LHC.

pp collision @40 MHz \Rightarrow L1 trigger @100 kHz \Rightarrow HLT @1 kHz

• Poor resolution & no flavor-tagging at L1 trigger.

No existing trigger!

Trigger Consideration

- Require new trigger for $h
ightarrow c ar{c} \gamma$

(HL-LHC projection) \Rightarrow L1 trigger @ 1 MHz \Rightarrow HLT @ 10 kHz

• Current and future upgrades of the ATLAS and CMS trigger systems will allow for multi-object requirements.

90 GeV $< M_{jj\gamma} < 160$ GeV.

- Both ATLAS and CMS will implement some form of tracking for the HL-LHC.
 - Reject pile-ups.

$$r_c = \frac{\sum p_T^{\text{track}}}{p_T^{\text{jet}}} > 0.2$$

Trigger Consideration

- Require new trigger for $h
ightarrow c ar c \gamma$

 $p_{Tj} > 27 \text{ GeV}, \ p_{T\gamma} > 20 \text{ GeV},$ $|\eta| < 2.5, \text{ and } \Delta R > 0.4$ $90 \text{ GeV} < M_{jj\gamma} < 160 \text{ GeV}.$

$$r_c = \frac{\sum p_T^{\text{track}}}{p_T^{\text{jet}}} > 0.2$$

Simulation

- Madgraph Pythia Delphes pipeline, with PU $\,\mu\,=\,200$
- 13 GeV smearing on top of Delphes to model jets resolution at L1.
- Fake photon rate $\epsilon_{j\to\gamma} = 2.5 \ (0.7) \times 10^{-4}$, with isolation $E_T^{R< R_c} < 6 \text{ GeV}$
- c-tag benchmarks.

Operating Point	ϵ_c	ϵ_b	ϵ_j
Ι	20%	33%	0.13%
II	30%	33%	1%
III	41%	50%	3.3%

Result

• Event selection

f

 \overline{f}

Expected # of events, in the range of

 $100 < M_{jj\gamma} < 140~{
m GeV}$ at HL-LHC ${\cal L}=3~{
m ab}^{-1}$

		Working	Signal	Background	Background	$S/\sqrt{S+B}$
$\int f$	f	Point	(QED)	events	event rate [Hz]	$[10^{-2}]$
- h f $ h$ f	. (L1)	No Tag	-	-	9.55×10^3	-
	Ŧ	Ι	269	$3.37 imes 10^8$	5.62	1.47
	Jag	II	349	5.18×10^8	8.63	1.54
$\begin{array}{c} 0.2 \\ 0.0 \\ 0.5 \\$		III	401	8.83×10^8	14.7	1.35
		Ι	29	1.14×10^7	0.191	0.878
	2 c-tags	II	66	2.23×10^7	0.371	1.42
		III	126	$5.79 imes 10^7$	0.966	1.66

Result

Event selection

Result

Event selection

Bound on Yukawa Coupling

 $M_{j\gamma}^{\max}, M_{j\gamma}^{\min}, M_{jj}, p_{T\gamma}, p_{Tj}^{\max}, p_{Tj}^{\min}, \eta_{\gamma}, \eta_{j}^{\max}, \eta_{j}^{\min}, \Delta R_{j\gamma}^{\max}, \Delta R_{j\gamma}^{\min}, \Delta R_{jj}, p_{Tjj\gamma}$

Summary

- Probing the charm-quark Yukawa coupling in $h
 ightarrow c ar{c} \gamma$
- Novel triggering strategy proposed.
- 8 times of the SM value at 2σ level at the HL-LHC .