N-Subjettiness for boosted jets

Davide Napoletano QCD@LHC '19 (Buffalo)

- Jet-Substructure techniques for boosted jets for signal/bkg disc
- Particularly important for hadronically decaying colourless particles
- Here focus on two-pronged decays, like a W
\mathbf{N}-Subjettiness: $\quad \tau_{N}^{(\beta)}=\frac{1}{p_{\perp} R^{\beta}} \sum_{i \in \mathrm{jet}} p_{\mathrm{L}_{i}} \min \left(\theta_{i a 1}, \ldots, \theta_{i a_{N}}\right)$

N-subjettiness

$$
\mathrm{d} \mathcal{P}_{W}=\mathrm{d} R_{W}(x)=\lambda^{2} \mathrm{~d} z \mathrm{~d} \theta^{2} P_{W}
$$

- Uniform and flat in energy and angle

$$
\mathrm{d} \mathcal{P}_{\mathrm{QCD}}=\mathrm{d} R=\frac{\alpha_{s} C_{i}}{2 \pi} \mathrm{~d} \log z \mathrm{~d} \log \theta^{2} P_{W}
$$

ore soft and collinear

$$
\begin{aligned}
\tau_{2}= & \sum_{i \in j e t} \min \left(z_{i} \theta_{i 1}^{2}, z_{i} \theta_{i 2}^{2}\right) & \text { However! } & \tau_{1}=\sum_{i \in j e t} \min \left(z_{i} \theta_{i 1}^{2}\right) \\
& \rightarrow \tau_{2}^{W} \sim \tau_{2}^{Q C D} & & \rightarrow \tau_{1}^{W}>\tau_{1}^{Q C D}
\end{aligned}
$$

N-subjettiness

$$
\mathrm{d} \mathcal{P}_{W}=\mathrm{d} R_{W}(x)=\lambda^{2} \mathrm{~d} z \mathrm{~d} \theta^{2} P_{W}
$$

$$
\mathrm{d} \mathcal{P}_{\mathrm{QCD}}=\mathrm{d} R=\frac{\alpha_{s} C_{i}}{2 \pi} \mathrm{~d} \log z \mathrm{~d} \log \theta^{2} P_{W}
$$

- more soft and collinear

One then expects $\tau_{21}=\frac{\tau_{2}}{\tau_{1}}$ to be a good discriminant

N -Subjettines cut

- First efforts resumming double logs in the small tau region
$\alpha_{s}^{n} \log ^{2 n} \rho, \quad \alpha_{s}^{n} \log ^{2 n} \tau, \quad \alpha_{s}^{n} \log ^{n} \rho \log ^{n} \tau$

N-Subjettines cut

- First efforts resumming double logs in the small tau region

$$
\alpha_{s}^{n} \log ^{2 n} \rho, \quad \alpha_{s}^{n} \log ^{2 n} \tau, \quad \alpha_{s}^{n} \log ^{n} \rho \log ^{n} \tau
$$

- The interesting region's clearly at much larger tau!
- Structure now more complicated, as finite terms have to be included to have correct accuracy in rho

$$
\alpha_{s}^{n} \log ^{2 n} \rho, \quad \alpha_{s}^{n} \log ^{2 n} \tau, \quad \alpha_{s}^{n} \log ^{n} \rho f_{n}(\tau)
$$

This is (in essence) the contribution we compute

N -Subjettiness cut

Small tau

$$
\begin{aligned}
& \rho_{1} \gg \rho_{2} \gg \cdots \gg \rho_{n} \\
& \theta_{1} \ll \theta_{2} \ll \cdots \ll \theta_{n}
\end{aligned}
$$

$$
\begin{gathered}
\rho \sim \rho_{1} \\
\tau_{21} \sim \frac{\rho_{2}}{\rho_{1}}
\end{gathered}
$$

N -Subjettiness cut

Small tau

$$
\begin{aligned}
& \rho_{1} \gg \rho_{2} \gg \cdots \gg \rho_{n} \\
& \theta_{1} \ll \theta_{2} \ll \cdots \ll \theta_{n}
\end{aligned}
$$

Mass is set by first emission

Finite tau

$$
\begin{aligned}
& \rho_{1} \sim \rho_{2} \sim \cdots \sim \rho_{n} \\
& \theta_{1} \ll \theta_{2} \ll \cdots \ll \theta_{n}
\end{aligned}
$$

All emissions contribute

$$
\begin{aligned}
\rho & =\sum_{i=1}^{n} \rho_{i} \\
\tau_{21} & =1-\frac{\max _{i} \rho_{i}}{\rho}
\end{aligned}
$$

N -Subjettiness cut

Small tau

$\rho_{1} \gg \rho_{2} \gg \cdots \gg \rho_{n}$
$\theta_{1} \ll \theta_{2} \ll \cdots \ll \theta_{n}$

Mass is set by first emission

Finite tau

$$
\begin{aligned}
& \rho_{1} \sim \rho_{2} \sim \cdots \sim \rho_{n} \\
& \theta_{1} \ll \theta_{2} \ll \cdots \ll \theta_{n}
\end{aligned}
$$

All emissions contribute

Next slides!!

Finite tau

- Single out the emission with the largest rho: ρ_{a}

$$
\left.\frac{\rho}{\sigma} \frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}\right|_{<\tau}=\int_{0}^{1} \frac{d \rho_{a}}{\rho_{a}} R^{\prime}\left(\rho_{a}\right) \lim _{\varepsilon \rightarrow 0} e^{-\int_{\varepsilon}^{1} \frac{d \rho_{v}}{\rho_{v}} R^{\prime}\left(\rho_{v}\right)}
$$

$$
\sum_{p=1}^{\infty} \frac{1}{p!} \int_{\varepsilon}^{\rho_{a}} \prod_{i=1}^{p} \frac{d \rho_{i}}{\rho_{i}} R^{\prime}\left(\rho_{i}\right) \rho \delta\left(\rho-\rho_{a}-\sum_{i=1}^{p} \rho_{i}\right) \Theta\left(\frac{\rho_{a}}{\rho}>1-\tau\right)
$$

- Identify two regions $\tau \lessgtr \frac{1}{2}$ and expand around $\frac{\tau}{1-\tau}$

$$
\begin{aligned}
& R\left(\rho-\rho_{a}\right) \approx R\left(\rho \frac{\tau}{1-\tau}\right)+R^{\prime}\left(\rho \frac{\tau}{1-\tau}\right) \log \left(\frac{\rho \tau}{(1-\tau)\left(\rho-\rho_{a}\right)}\right) \\
& R^{\prime}\left(\rho-\rho_{a}\right) \approx R^{\prime}\left(\rho \frac{\tau}{1-\tau}\right) .
\end{aligned}
$$

Finite tau

$$
\left.\frac{\rho}{\sigma} \frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}\right|_{<\tau}= \begin{cases}R^{\prime}(\rho) R\left(\frac{\rho \tau}{1-\tau}\right)(1-\tau)^{R^{\prime}}{ }_{2} \mathrm{~F}_{1} & \tau<\frac{1}{2} \\ R^{\prime}(\rho) R(\rho)\left[2^{-R^{\prime}(\rho)}{ }_{2} \mathrm{~F}_{1}+R^{\prime}(\rho) \mathcal{I}_{\mathrm{ME}}\right] & \tau>\frac{1}{2}\end{cases}
$$

- Structure of the result is remarkably simple: scale depends on value of tau

Finite tau

- Multiple emission function, keeps track of transition points at $\tau=\frac{n-1}{n}$

$$
f_{\mathrm{ME}}\left(x, R^{\prime}\right)
$$

$$
I_{\mathrm{ME}}=\int_{1}^{x} \frac{\mathrm{~d} u}{(1+u)^{R^{\prime}}} \Gamma\left(R^{\prime}\right) \oint \frac{\mathrm{d} v}{2 \text { । } \pi} e^{\nu x} \exp \left\{\frac{R^{\prime}}{2} \operatorname{Ei}(-v)\left[\log (-v)-\log \left(\frac{1}{v}\right)\right]\right\}
$$

Results

- Checks of the minimisation procedure
- minimal axes quite similar to kt

- Analytical vs exact: quite good at small/large tau
- But, it's integrated over, so beyond our accuracy (originates in neglecting large angle effects)

Results

Parton Level

- Good excuse to do a generators comparison!
- Analytical scale var is quite large (it's only LL)
- Overall quite good agreement (Herwig was before color fix)

Results

Hadron Level

- Clearly no control over NP-region
- still quite large effects in perturbative region
- rest is, over all, well under control

Results

- Find the value of tau that makes distribution flat

Decorrelated taggers

- Not necessarily an easy task in general, quite easy having analytical control

- To show-off we do it and seems to be working pretty reliably

Conclusions

- Jet-substructure has been successfully used for discrimination problems
- Analytical calculations in this field have also helped introducing new observables
- However often oversimplifications to overcome difficulties
- This calculation addresses some of them, and we produce some results with it!
- The important thing is that with an analytical calculation one is able to extract some physics information on the problem at hand

