Precision phenomenology with MCFM

Tobias Neumann, Illinois Tech/Fermilab

with John Campbell, Fermilab

July 15th, 2019

"Explosion" of NNLO calculations

- Only few fully differential codes are public:
 - W/Z: DYNNLO (NNLL small q_T in DYres), FEWZ (NLO EW effects), GENEVA (Z, NNLL q_T and thrust)
 - **Higgs**: HNNLO (NNLL small q_T in HRes), SusHi (BSM, mass effects), FehiPro (mass effects)
 - *γγ*: 2*γ*NNLO
- MATRIX: $Z, W, H, \gamma\gamma, ZZ, WW, WZ, Z\gamma$
- MCFM: $Z, W, H, \gamma\gamma, WH, ZH, Z\gamma$

Some motivation: W and Z production

1612.03016: Precision measurement and interpretation of inclusive W^+ , W^- and Z/γ^* production cross sections with the ATLAS detector

- Data together with HERA combined into NNLO PDF set/analysis: ATLASepWZ16
 - Fiducial cross sections: FEWZ-DYNNLO difference of up to 1.2%!
 - Experimental uncertainties: 0.6%
- Measurement of $\left|V_{cs}\right|$

Measurement of $\left|V_{cs}\right|$

1612.03016		$ V_{cs} $
	Central value	0.969
	Experimental data	±0.013
	Model $(m_b, Q_{\min}^2, Q_0^2 \& m_c)$	+0.006 -0.003
	Parameterization	+0.003 -0.027
	$\alpha_{ m S}$	± 0.000
	EW corrections	± 0.004
	QCD scales	+0.000 -0.003
	FEWZ 3.1b2	+0.011
	Total uncertainty	+0.018 -0.031

Table 22: Summary of the central value and all uncertainties in the CKM matrix element $|V_{cs}|$.

"FEWZ DYNNLO" uncertainty purely numerical

Symmetric p_T cuts

- Exposed to collinear singularity with a cutoff $\sim \delta \cdot \log(\delta)$ (Frixione, Ridolfi '97)
- Used in experimental studies and theory benchmark papers 1606.02330: FEWZ, DYNNLO, SHERPA authors comparison

NNLO W^+ cross section with varied missing energy

W^+ benchmark plot as in 1606.02330

NNLO PDF uncertainties

Six PDF sets with 371 members in total

MCFM at a glance

MCFM well established parton level Monte Carlo code

(since '99 Campbell; Ellis; Campbell, Ellis, Williams '11) 2015: MCFM-7.0 with OpenMP (Campbell, Ellis, Giele) 2016: MCFM-8.0 with NNLO, MPI (Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams)

• NLO cross sections: Catani-Seymour dipoles

Hundreds of processes/decays Recently added: EW one-loop corrections; Higgs+jet w/ top-mass effects, off-shell single-top SMEFT

• NNLO cross sections: N-jettiness subtractions

Most single and diboson processes

- Extensively tested on Linux, Mac, BSD's
- No further external dependency requirements
 - Helicity amplitudes contained in "analytical" form
 - QCDLoop2 included as 1-loop provider
- Optional: LHAPDF, MPI implementation library

NNLO processes in MCFM: Color singlets

	public in MCFM
Η	1605.08011: Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams
Z (w. NLO EW)	
W^{\pm}	
ZH	
$W^{\pm}H$	1601.00658: Campbell, Ellis, Williams
γ	1612.04333: Campbell, Ellis, Williams
$\gamma\gamma$	1603.02663: Campbell, Ellis, Li, Williams
$Z\gamma$	1708.02925: Campbell, Neumann, Williams

NNLO processes in MCFM: Jet processes

	reference
$W^{\pm}+{ m jet}$	1504.02131: Boughezal, Focke, Liu, Petriello
$H + \mathrm{jet}$	1505.03893: Boughezal, Focke, Giele, Liu, Petriello 1906.01020: Campbell, Ellis, Seth
$Z+{ m jet}$	1512.01291: Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello
$\gamma+{ m jet}$	1703.10109: Campbell, Ellis, Williams

None of these public yet

CPU budget for +jet processes: $\mathcal{O}(1000)$ hours

MCFM-9.0

- Completely new core components:
 - Intel compiler compatibility: 10-15% performance benefit
 - Integration: part adaptive, low-discrepancy sequence
 - Histogramming
 - Automatic scale and PDF+ α_s uncertainties at NNLO, fully differential
 - NNLO: Multiple au_{cut} at once with asymptotic fitting
- Major code cleanup, increase hackability & maintainability Previous MCFM forks: DYNNLO, HNNLO, DYRes, HRes, MFCM-RE; many more codes make use of MCFM amplitudes and routines

^{./}Install && make

Numerical control matters

NNLO Higgs production double real emission precision goal for total cross section 0.2%

Performance matters

Per-mille NNLO cross sections on your desktop 🗸

Go, spot the differences!

371 PDF set members, 1 day, 16 computers (from 2010)

High precision determination of the gluon fusion Higgs boson cross-section at the LHC

Charalampos Anastasiou^{*a*}, Claude Duhr^{*b,c*}, Falko Dulat^{*a*}, Elisabetta Furlan^{*a*}, Thomas Gehrmann^{*e*}, Franz Herzog^{*f*}, Achilleas Lazopoulos^{*a*}, Bernhard Mistlberger^{*b*}

For a Higgs mass of $m_H = 125$ GeV and an LHC center-of-mass energy of 13 TeV, our best prediction for the gluon fusion cross-section is

$$\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,(\mathrm{theory}) = 1.56 \,\mathrm{pb} \,(3.20\%) \,(\mathrm{PDF} + \alpha_s)$$

vs. 1603.08906: "A critical appraisal and evaluation of modern PDFs" authors find PDF+ α_s of 13%

MCFM-9.0 Summary

- Several orders of magnitude performance improvements
- Easier to use and hack than ever (framework with analytical amplitudes for further applications)
- Automatic PDF+ α_s uncertainties at NNLO, fully differentially
- NNLO: multiple au_{cut} with **asymptotic fitting**, fully differentially

Available in August at https://mcfm.fnal.gov/