Resummation of Jet Rates in e^+e^- collisions

Daniel Reichelt

Preliminary work done in collaboration with Nick Baberuxki, Christian Preuss, Steffen Schumann

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

July 18, 2019 QCD@LHC, Buffalo NY

Fig.20g Another 3-jet event projected into the event plane.

- How many jets in this picture?
- By eye: 3 jets?
- Better: It depends, on the jet algorithm (for this talk: Durham algorithm) and its resolution
- $\bullet \Rightarrow \text{Important to understand this relation} \\ \text{as good as we can}$

- Typically studied: $2 \rightarrow 3$ resolution scale y_3
- high accuracy possible, e.g. NNLL+NNLO [Banfi, McAslan, Monni, Zanderighi 2016]
- Aim of this talk: at least NLL accuracy for higher multiplicities
 - Fits of $\alpha_{\rm s}$ in e^+e^- collisions [Verbytskyi et. al. 2019]
 - ► LHC: *k*_T splitting scales in *Z* + jets measured [ATLAS Collaboration 2017], prediction could be obtained by extending this study to colored initial states
 - ► Easy to define higher multiplicity equivalent → convenient to study effects like color correlations that become more important with higher multiplicities.

Observable Definition & Setup

Resummation

3 Results

- Durham clustering:
 - Define

$$y_{ij}=rac{2\min(E_i^2,E_j^2)}{Q^2}(1-\cos heta_{ij})$$

between each two objects i and j in the event.

- For *n* objects, find *i*, *j* that minimize $y_{ij} := y_n$.
- Recombine *i* and *j* into one object (here: by adding their four-momenta).
- Continue until left with only 2 objects (or until y_n < y_{cut})

• In the soft limit:

$$y_{
m n} pprox k_T/Q$$

with k_T transverse momentum to direction of closest hard leg.

- Specific to this study:
 - We want to resum soft gluons around some hard (n − 1 parton) born event with well behaved fixed order description ⇒ require y_{n-1} > {0.008, 0.02, 0.08}
 - → different from the usual (experimental) definition
 - Results shown for LEP1 energy Q = 91.2 GeV.

Observable Definition & Setup

2 Resummation

3 Results

- Based on the CAESAR formalism [Banfi, Salam, Zanerighi 2005]
- Independent implementation within the Sherpa framework [Gerwick, Höche, Marzani, Schumann 2015]
- Write cumulative cross section as

$$\Sigma(v) = \sum_{\delta} \int d\mathcal{B}_{\delta} rac{d\sigma_{\delta}}{d\mathcal{B}_{\delta}} \exp\left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(v)
ight] \mathcal{S}^{\mathcal{B}_{\delta}}(v) \mathcal{F}^{\mathcal{B}_{\delta}}(v).$$

- exponent and \mathcal{F} already present in 2-jet case
- numerical evaluation of \mathcal{F} and computation of color correlations in \mathcal{S} main challenge in going to higher multiplicities.

- CAESAR method (with two hard legs):
 - ► Parametrize observable in the presence of single emission $V(k_i) = d_l g_l(\Phi) \left(\frac{k_T}{Q}\right)^a e^{-b_l \eta_l} \rightarrow k_T/Q$
 - For suitable observables $\Rightarrow \Sigma(v) = e^{-R_{NLL}(v)} \mathcal{F}(v)$
 - Single emission integral with \$\alpha_s\$ in CMW scheme
 \$\mathbb{R}_{NLL}(v) = 2 \int_{Q^2 v^2} \frac{2}{a+b}}{Q^2 v^2} \frac{d\xi}{\xi} \left[\int_0^1 dz \frac{\alpha_s(\xi(1-z)^2/b)}{2\pi} \frac{2}{1-z} \Omega(\left[\ln \frac{(1-z)^2/a}{\xi(1-z)} \right] \frac{\alpha_s(\xi)}{\xi(1-z)} C_F B_q \right]\$
 \$\mathcal{F}(v) = \lim_{\epsilon \rightarrow 0} \mathcal{F}_{\epsilon, \vec{v}}(v)\$,

$$\mathcal{F}_{\epsilon,ar{v}}\left(extsf{v}
ight) = e^{R_{
m NLL}'(extsf{v})\ln\epsilon} \sum_{m=0}^{\infty} rac{1}{m!} \left(\prod_{i=1}^m \int rac{d\zeta_i}{\zeta_i} \, d\xi_i \, rac{d\Phi}{2\pi} P(\zeta_i,\xi_i,\Phi)
ight) \Thetaigg(1 - rac{V(k_i(ar{v}))}{ar{v}}igg)$$

- Validation: Convergence of numerical $v \rightarrow 0$ limit in calculation of \mathcal{F} .
- Calculation of fixed order coefficien \mathcal{F}_2 :

 $\mathcal{F}_2 = -\frac{\pi^2}{8} \frac{\sum_l C_l^2}{2\left(\sum_l C_l\right)^2}$

 \rightarrow confirmed in numerical calculation within uncertainties.

 $(C_I = C_A/C_F)$

- The S-function and color correlations:
- Takes the general form:

$$S(t) = \frac{\operatorname{Tr}\left[He^{-\frac{t}{2}\Gamma^{\dagger}}ce^{-\frac{t}{2}\Gamma}\right]}{\operatorname{Tr}\left[cH\right]}, \quad |\mathcal{M}|^{2} = \operatorname{Tr}\left[cH\right]$$

• Soft anomalous dimension Γ (up to sum over hard legs that can be absorbed into R_l 's) give by [Bonciani, Catani, Mangano, Nason 2003]

$$\Gamma = \sum_{i} \sum_{j>i} T_i T_j \log(Q_{ij}/\mu)$$

• Calculation automated for arbitrary number of legs [Gerwick, Höche, Marzani, Schumann 2015].

- Automation of color calculations:
 - **1** Pick a specific set of basis vectors t_{α} .
 - ★ Trace-basis sufficient.
 - 2 Calculate $c_{\alpha\beta} = t_{\alpha}t_{\beta}$ and its inverse.
 - * If "Basis" over-complete \rightarrow generalised inverse with the methods of [Gerwick, Höche, Marzani, Schumann 2015] (not necessary for multiplicities discussed here)
 - **3** Calculate $T_i T_j$ in this basis
 - * Only once necessary for given number of quarks and gluons.
 - Hard matrix *H* from COMIX in Sherpa framework.

• Validation: Compare soft approximation to full matrix element

 $R = \frac{\operatorname{Tr} \left[H_n c_n \Gamma \right]}{\operatorname{Tr} \left[c_{n+1} H_{n+1} \right]}$

• Take some hard configuration (non-collinear) and scale one of the momenta down $k \to \lambda_s k$ with $\lambda_s \to 0$.

Fixed order and Matching:

- Of course at least NLO available in principle for any multiplicity.
- Focus here: resummation with non-trivial color \rightarrow so far only (additive) matching to LO.
- Modify logs so resummation goes to 0 at physical endpoints

$$\ln 1/y_n \to \ln \left(1/y_n - 1/y_n^{\max} + 1\right)$$

with endpoint $y_n^{\max} = 1/3$ for y_3 and $y_n^{\max} = y_{n-1}$ for n > 3.

Observable Definition & Setup

2 Resummation

- Reproduce the known result for y_3
- Comparison to Sherpa results:
 - MEPS merging with up to 5 jets at LO
 - Cutoff effects dominate at low y₃.
 - Good agreement in bulk of distribution.

- Results for y_5 and y_6 with a cut on the born event $y_{n-1} > 0.008$
- Note: all results normalized to inclusive (n − 1)-parton cross-section with corresponding cut

- Dependence on cut on born events for y_4 .
- Take cuts to higher values → better behaved (hopefully) but not realistic for higher multiplicities.
- Varying cut in resummation mimics behaviour of shower.

- Subleading color contributions:
 - ▶ Could repeat calculation with strictly $N_c \rightarrow \infty$ while $\alpha_s/N_c = \text{const.}$
 - ► We usually do "better":

$$\Sigma(\mathbf{v}) = \sum_{\delta} \int d\mathcal{B}_{\delta} \frac{d\sigma_{\delta}}{d\mathcal{B}_{\delta}} \exp\left[-\sum_{l} R_{l}^{\mathcal{B}_{\delta}}(\mathbf{v})\right] S^{\mathcal{B}_{\delta}}(\mathbf{v}) \mathcal{F}^{\mathcal{B}_{\delta}}(\mathbf{v}).$$

- \blacktriangleright Everything apart from ${\cal S}$ has one of the hard legs associated with it.
- Correct Casimir/anomalous dimensions simple to implement e.g. in showers (though maybe hard to analyse if correct).
- \blacktriangleright Use this as an in between step to quantify "non-trivial" subleading contributions \rightarrow "improved LC".

- Not really clear what to match to \rightarrow no matching and restrict range to $\ln(1/y_n) > 5$.
- Improved LC reduces difference to full color, but growing with higher *n*.
- Results for y_4 und y_5 .

- 1 Observable Definition & Setup
- 2 Resummation

3 Results

- Conclusion
 - ► Presented preliminary results for jet resolution scales with high multiplicities in e⁺e⁻ annihilations, at NLL+LO accuracy including non-trivial color correlations.
 - Calculation automated as plugin to Sherpa.
 - Observed good qualitative agreement between Sherpa parton shower predictions and analytic result in peak region.
 - Subleading color contributions can be large, but difference significantly reduced by simple adjustments.
- Outlook and To-Do's:
 - NLO calculation can be included.

Backup

- Color for y_3 trivial.
- $\bullet \ \rightarrow \ \text{improved LC already full color} \\ \text{structure.}$

