Double Parton Scattering Measurements at the CMS Experiment

Maxim Pieters

Overview

Introduction on double-parton scattering

DPS experiments at CMS

- Study of DPS using W + 2-jet events in proton-proton collisions at √s = 7 TeV
- Measurement of four-jet production in proton-proton collisions at sv = 7 TeV
- Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at 7 TeV
- Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

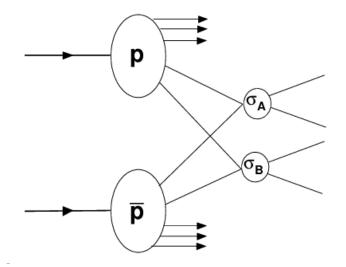
Conclusion

Double Parton Scattering

DPS cross section: factorisation formula

Cross section = *parton level cross sections* x *double parton distributions*

$$\frac{d\sigma_{DPS}}{dx_A dx_B dx_A' dx_B'} = m\hat{\sigma}_A \hat{\sigma}_B \int d^2 \boldsymbol{y} \, F(x_A, x_B, \boldsymbol{y}) F(x_A', x_B', \boldsymbol{y})$$


- $\hat{\sigma}_A$ and $\hat{\sigma}_B$ parton level cross sections
- m is a combinatorial factor, ½ if processes are identical
- $F(x_A, x_B, y)$ is the double parton distribution function
- y is the transverse distance between the partons or impact parameter

Assume that $F(x_A, x_B, y) = f(x_A)f(x_B)G(y)$ and where

- f(x) is the standard single parton distribution func
- G(y) is the transverse part of the double parton distribution and the same for all partons

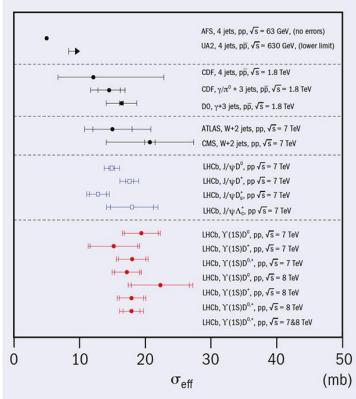
The differential cross section becomes

$$\frac{d\sigma_{DPS}}{dx_A dx_B dx_A' dx_B'} = m \cdot \hat{\sigma}_A f(x_A) f(x_A') \cdot \hat{\sigma}_B f(x_B) f(x_B') \cdot \int d^2 \mathbf{y} G(\mathbf{y})$$

Double Parton Scattering

Where $\hat{\sigma}f(x)f(x')$ is the differential cross section for a single parton scattering event, which results in the pocket formula for DPS

$$\frac{d\sigma_{DPS}}{dx_1 dx_2 dx_1' dx_2'} = \frac{m}{\sigma_{eff}} \frac{d\sigma_1}{dx_1 dx_1'} \frac{d\sigma_2}{dx_2 dx_2'}$$


Where
$$\frac{1}{\sigma_{eff}} = \int d^2 y G(y)$$

In this approach the parameter σ_{eff} is independent of the final state and measurement of effective area parameter σ_{eff} gives insight in hadron structure in the transversal plane!

Examine variables that exhibit distinctive behaviour for SPS and DPS processes

Different final states in DPS measurements at CMS

- W + 2 jets
- 4 jets
- $\gamma + 3$ jets
- 2b + 2 jets
- Same-sign WW

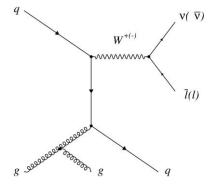
Study of DPS using W + 2-jet events in protonproton collisions at $\sqrt{s} = 7$ TeV

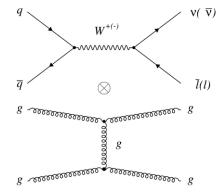
Measure DPS sensitive variable

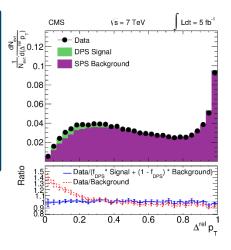
$$\Delta p_T^{rel} = \frac{|\vec{p}_T(j_1) + \vec{p}_T(j_2)|}{|\vec{p}_T(j_1)| + |\vec{p}_T(j_2)|}$$

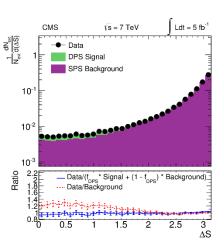
 \rightarrow Jets back-to-back in DPS, variable expected to be small (\approx 0)

$$\Delta S = \arccos\left(\frac{\vec{p}_T(\mu, E_{T,miss}) \cdot \vec{p}_T(j_1, j_2)}{|\vec{p}_T(\mu, E_{T,miss})| \cdot |\vec{p}_T(j_1, j_2)|}\right)$$


No correlation between particle pairs for DPS, distribution will be flat




Fully corrected variables fitted with signal and background template by using a binned likelihood method



- $f_{DPS} = 0.055 \pm 0.002$ (stat.) ± 0.014 (syst.)
- $\sigma_{eff} = 20.7 \pm 0.8 \text{ (stat.)} \pm 6.6 \text{ (syst.)} \text{ mb}$

Measurement of four-jet production in proton-

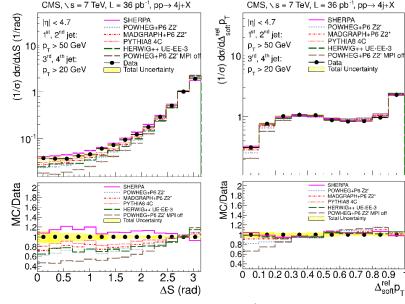
proton collisions at $\sqrt{s} = 7$ TeV

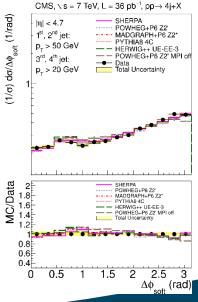
Measure DPS sensitive variable

$$\Delta p_T^{rel} = \frac{|\vec{p}_T(j_3) + \vec{p}_T(j_4)|}{|\vec{p}_T(j_3)| + |\vec{p}_T(j_4)|}$$

$$\Delta S = \arccos\left(\frac{\vec{p}_T(j_1, j_2) \cdot \vec{p}_T(j_3, j_4)}{|\vec{p}_T(j_1, j_2)| \cdot |\vec{p}_T(j_3, j_4)|}\right)$$

$$\Delta \varphi_{34} = |\varphi(j_3) - \varphi(j_4)|$$


Differential cross section determined


$$\sigma_{4j} = 330 \pm 5 \text{ (stat.)} \pm 45 \text{ (syst.)} \text{ pb}$$

Normalised differential cross section in function of the

variables compared to different MC models with and without MPI

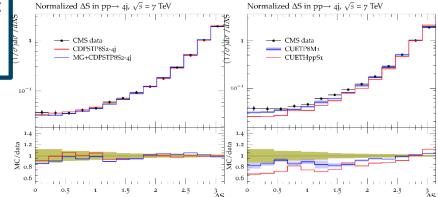
Models only give proper description in some regions of the phase space

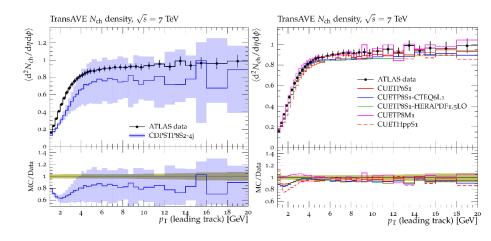
Measurement of four-jet production in protonproton collisions at $\sqrt{s} = 7$ TeV

New method for extraction of σ_{eff} applied :

Tuning method (doi:10,1140/epjc/s10052-016-3988-x):

DPS sensitive variables fitted directly and σ_{eff} determined from the models


CMS Tune	$\sigma_{ m eff}({ m mb})$ at 7 TeV	$\sigma_{ m eff}({ m mb})$ at 13 TeV
CUETP8S1-CTEQ6L1	$27.8^{+1.2}_{-1.3}$	$29.9^{+1.6}_{-2.8}$
CUETP8S1-HERAPDF1.5LO	$29.1^{+2.2}_{-2.0}$	$31.0^{+3.8}_{-2.6}$
CUETP8M1	$26.0^{+0.6}_{-0.2}$	$27.9^{+0.7}_{-0.4}$
CUETHppS1	$15.2^{+0.5}_{-0.6}$	$15.2^{+0.5}_{-0.6}$
CDPSTP8S1-4j	$21.3^{+1.2}_{-1.6}$	$21.8^{+1.0}_{-0.7}$
CDPSTP8S2-4j	$19.0^{+4.7}_{-3.0}$	$22.7^{+10.0}_{-5.2}$


2 DPS tunes:

- CDPSTP8S1-4j: only MPI:expPow varied
- CDPSTP8S2-4j: MPI:pT0Ref, MPI:ecmPow and ColourReconnection:range additionally varied

DPS and UE tunes not completely compatible:

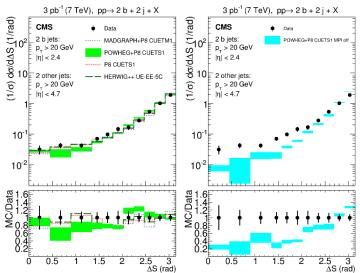
- DPS sensitive observables not quite as good described by UE tunes
- Difficulty of describing soft and hard MPI within the current frameworks

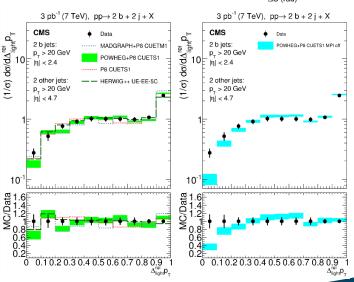
Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at $\sqrt{s} = 7$ TeV

Measure DPS sensitive variable

$$\Delta p_T^{rel} = \frac{|\vec{p}_T(light_1) + \vec{p}_T(light_2)|}{|\vec{p}_T(light_1)| + |\vec{p}_T(light_2)|}$$

$$\Delta S = \arccos\left(\frac{\vec{p}_T(bottom_1, bottom_2) \cdot \vec{p}_T(light_1, light_2)}{|\vec{p}_T(bottom_1, bottom_2)| \cdot |\vec{p}_T(light_1, light_2)|}\right)$$


$$\Delta \varphi_{light} = |\varphi(light_1) - \varphi(light_2)|$$


Differential cross section determined

$$\sigma_{2b+2j} = 69 \pm 3 \text{ (stat.)} \pm 24 \text{ (syst.)} \text{ pb}$$

Normalised differential cross section will be compared to different MC models

- Good agreement between MC models except Powheg+P8 with no MPI
- Differences in description in DPS sensitive areas
- First sign of DPS sensitivity in multi-jet final state with heavy-quarks

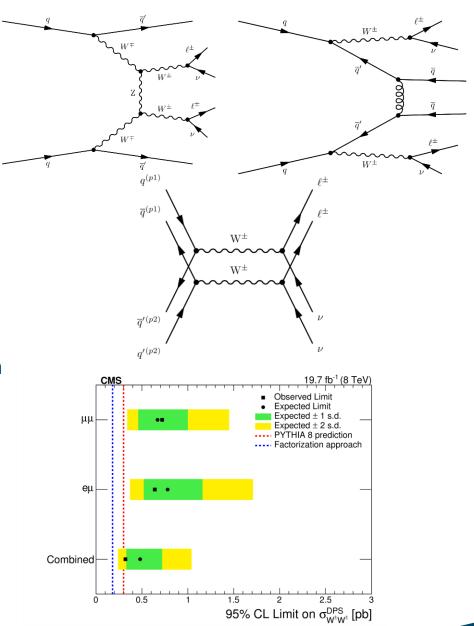
CMS PAS SMP-18-015

Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

Motivation

W boson production: benchmark process at LHC and golden channel for DPS production

Quark initiated


Sensitive to longitudinal quark polarizations

Not sensitive to pileup effects and clean final state

DPS WW process constitutes a background in new physics at LHC

Previous study at $\sqrt{s} = 8 \text{ TeV}$ (doi:10.1007/JHEP02(2018)032)

- First search for same-sign WW production through DPS
- No significant excess of events observed above the expected SPS yield
- 95% confidence level lower limit of 12.2 mb on σ_{eff} or an upper constraint of 0,32 pb on the cross section

Signal and Background Processes

Signal

- Same-sign lepton pairs (eμ, μμ) coming from W boson pairs
- MET from decay of W bosons

Background

- Diboson processes
 - WZ as dominant background
 - Wγ, Wγ*, Zγ, ZZ and WWW as additional processes
 - One of the leptons escapes detector acceptance
 - Estimation is MC driven
- Electron charge flips
 - $Z \rightarrow \tau \tau$ with letponic decay τ
 - Data driven estimation

- Production of fake leptons
 - QCD multijet and W+jets: misidentification of jets as leptons
 - Top pair+jets: leptonic decay of top quarks
 - Data driven estimation through fake rate method

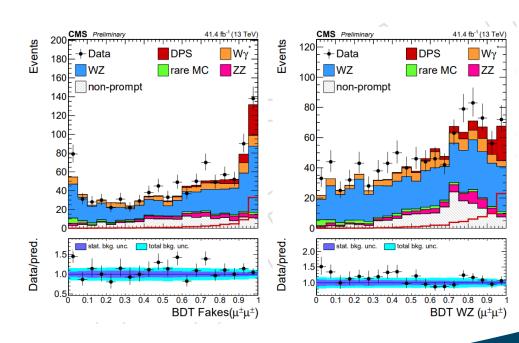
Event Selection and Multi-Variate Analysis using a Boosted Decision Tree (BDT) Training

Variables:

- p_T^{l1} and p_T^{l2}
- $\Delta \varphi(l_1, l_2)$

• E_T^{miss}

• $\Delta \varphi(l_1, E_T^{miss})$

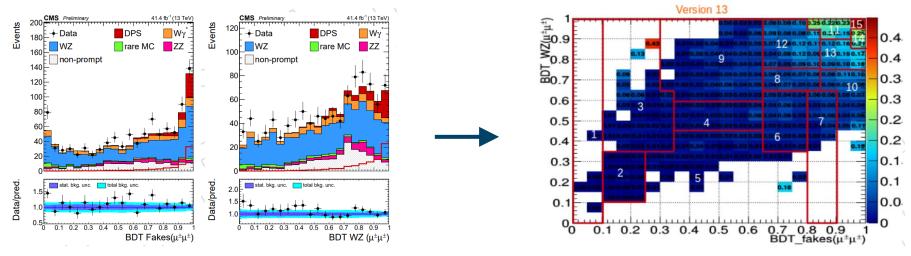

 $\bullet M_{T2}^{ll}$

- $\Delta \varphi(l_1 l_2, l_2)$
- $\bullet m_T(l_1, l_2)$
- $\eta_1 \cdot \eta_2$
- $m_T(l_1, E_T^{miss})$ |r
 - $\bullet |\eta_1 + \eta_2|$

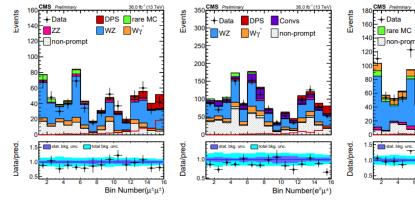
MVA based on BDT technique to enhance signal sensitivity

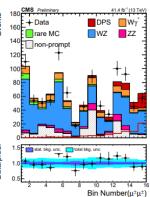
- 2 BDTs trained
 - WZ background
 - Fake lepton background
- Same variables used in both BDTs
- The BDTs determine a 2D distribution

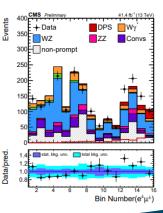
```
two leptons: e^{\pm}\mu^{\pm} or \mu^{\pm}\mu^{\pm} p_{\mathrm{T}}^{\ell_{1}} > 25\,\mathrm{GeV} , p_{\mathrm{T}}^{\ell_{2}} > 20\,\mathrm{GeV} |\eta_{\mathrm{e}}| < 2.5, |\eta_{\mu}| < 2.4 p_{\mathrm{T}}^{\mathrm{miss}} > 15\,\mathrm{GeV} N_{\mathrm{jets}} < 2\,(p_{\mathrm{T}} > 30\,\mathrm{GeV} and |\eta| < 2.5) N_{\mathrm{b\text{-}tagged\ jets}} = 0\,(p_{\mathrm{T}} > 25\,\mathrm{GeV} and |\eta| < 2.4) veto on additional e, \mu, and \tau_{\mathrm{h}}
```

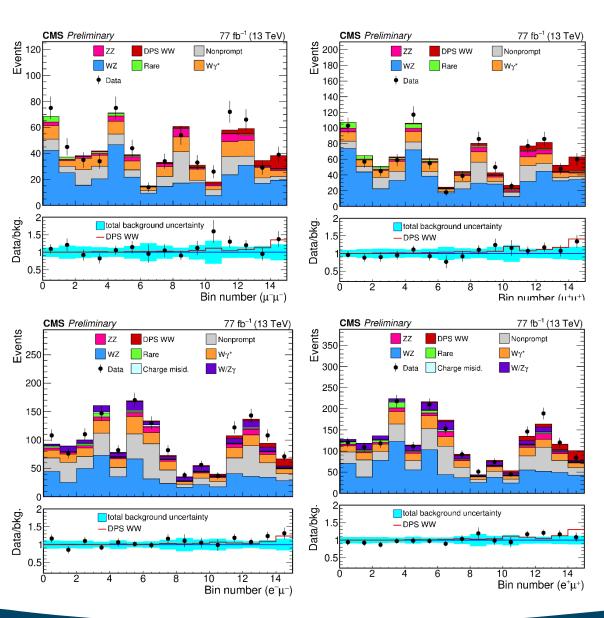
Constructing the Final Classifier


2D BDT distribution mapped into 1D classifier


Determination of bins through iterative process


→ Make discrimination between signal and background as large as possible

Pre-fit results (2016 left, 2017 right)

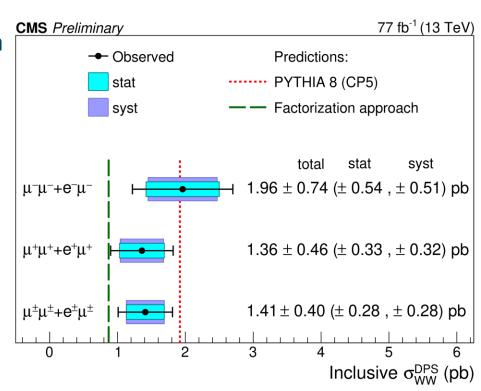


Resulting Distributions (post-fit)

Maximum likelihood fit performed to final classifier Different final states fit separately

Better signal sensitivity due to W production asymmetry

Extraction of σ_{eff}


After training two multivariate classifiers and combining their results a first measurement of DPS same sign WW is achieved

Model predictions:

- Pythia 8 (CP5)
- Factorized approach by using pocket formula with:
 - Inclusive W production cross section
 - σ_{eff} = 20.7 ± 6.6 mb

Cross sections have been deducted for both the lepton pair configurations and their combination

Conclusion

- Multiple studies of different DPS processes have been performed for different final states at the CMS experiment
- Within these final states a proper choice of the many DPS sensitive variables needs to be made
- \blacksquare Proper understanding of the background processes is needed to obtain a value for σ_{eff} , multiple techniques exist
 - Template method
 - Tuning method
 - MVA using BDT