

Report on the Strategic Planning Workshop: Particle Physics Plan

Lauren Hsu PAC Meeting 18 January 2019

What is the Annual Lab Strategic Plan?

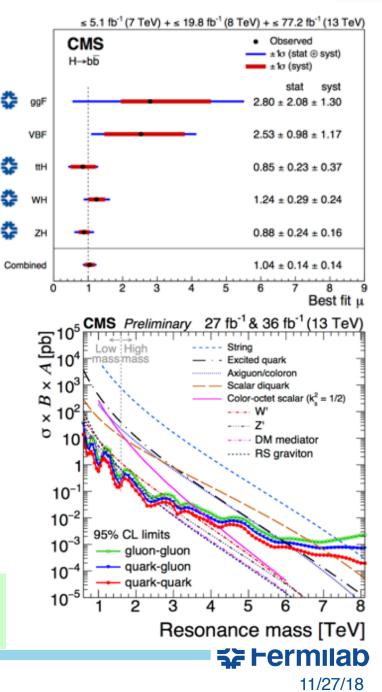
- Defines lab goals and activities with the purpose of communicating the plan to the DOE, employees and community
- Serves as a starting point for discussion between laboratory and DOE about laboratory's future directions
- Organized by "strategic themes":
 - Accelerator Science (see Sam Posen's talk for this and detector R&D)
 - Building for Science
 - Computing for Science
 - Collider Science
 - Cosmic Science
 - Neutrino Science
 - Precision Science
 - Quantum Science
- Planning covers next 10 years; Plan is reviewed and revised yearly
- This effort occurs in parallel to the SAC-coordinated retreats and focuses on nearer term plans (up to next 10 years). Existing working group structure setup in coordination with first and second SAC-organized retreats.

Lab Strategic Plan is Well-Aligned with P5

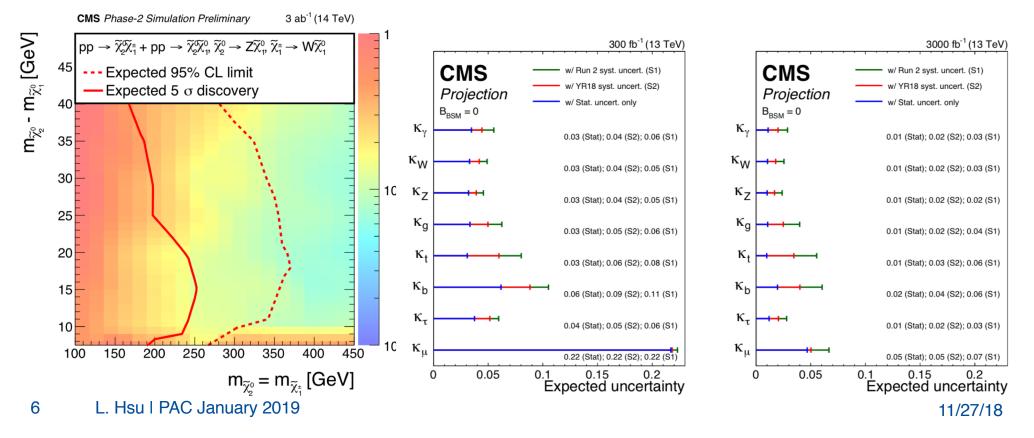
Jim Siegrist slide (Nov. 2018 HEPEP meeting)

Project	2015	2020	2025	2030	All projects on budget & schedule
HEP Science Output Currently operating					 Projects fully funded as of FY19 Muon g-2: 1st beam 2017
Large Projects [>\$200M]					 LHC detector upgrades: on track for 2019/20 installation
Mu2e					Mu2e : 1 st data in 2020
LHC: Phase 1 upgrade					LSST: full science operations 2023
			_		DM-G2 (superCDMS & LZ): 1 st data 2020
HL-LHC					DESI: 1st light 2019
LBNF/DUNE (and PIP-II)					 HL-LHC accelerator and detector upgrades started on schedule
Medium and Small Projects LSST	[<\$200M]				 LBNF/DUNE & PIP-II schedules advanced due to strong support by Administration & Congress
DESI DM G2					 CMB S4: developing technically-driven schedule to inform agencies, NAS Astro 2020 Decadal Survey
DM G3		_			DM-G3: R&D limited while fabricating G2
CMB S4		You are	here		 ILC: cost reduction R&D while waiting for decision from Japan
Approximate Con Expected Physics			ovember 2018		 Broad portfolio of small projects running HEP Status at HEPAP

Collider Science 10 year plan


L. Hsu I PAC January 2019

LHC Science in Run1 and Run2


- FNAL maintains its leading role in the CMS Higgs boson program, searches for Dark Matter and for BSM, Standard Model program
 - 4 physicists leading SUSY, Exotica, SM subgroups
 - Contributions to high profile journal publications, including the <u>Observation of Higgs decaying to b quarks (*cover of PRL*)
 </u>
- FNAL continues to educate through LPC: 60+ students & 40 facilitators attending Data Analysis School this week
- In 2018 CMS breaks publication record: 141 journal publications in one year
- FNAL to pioneer breakthrough trigger and reconstruction techniques enabling CMS to access previously unexplored parts of BSM phase space
 - Extending DM and BSM searches to complex signatures with displaced particles, semi-invisible jets, lepton-jets

Very successful end of Run2 with > 150/fb (more than planned for Run1+Run2)

LHC Science Program in Run3 and HL-LHC

- The Fermilab group will continue to pursue research along the lines identified by P5, exploiting an upgraded detector with enhanced capabilities
 - Leadership in cutting edge usage of Machine Learning at trigger level, data quality monitoring, and object reconstruction and analysis levels
 - Enables experiment to effectively collect data more efficiently and to yield higher sensitivity in precision measurements and searches for BSM physics
 - Fermilab is additionally a leader in computing and software infrastructure development for CMS

Cosmic Science 10 year plan

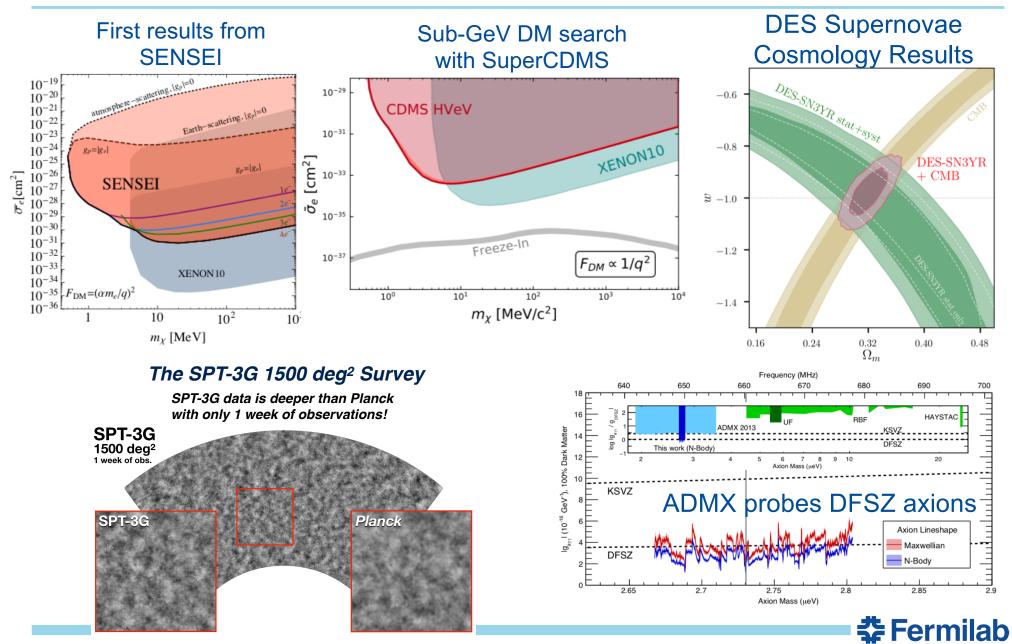
L. Hsu I PAC January 2019

Summary of Cosmic 10-year plan

🗲 Fermilab

11/27/18

See Josh Frieman's talk for details on Cosmic steering committee conclusions


• Drive towards discovery of dark matter

- Leadership in low-mass dark matter and axion searches
- Analysis of data sets (SuperCDMS, SENSEI, LZ) to discover, or constrain, the nature of Dark Matter
- Develop theoretical models that narrow range of particle candidates

Leadership in Cosmic Microwave Background

- Lead operation of stage-3 CMB (SPT-3G) experiment
- Complete operations and science analysis of SPT-3G survey
- Have a leading role in stage-4 (CMB-S4) program
- Advance detector and readout technical development for CMB-S4
- Understanding Cosmic Acceleration and the Physics of Neutrinos
 - Lead effort to constrain dark energy using DES, leverage experience for LSST science
 - Lead a stage-5 dark energy experiment (mid-scale spectroscopic survey) to follow-up DES, LSST
 - Extract cosmological constraints on dark energy and neutrinos from cosmic science experiments

Cosmic Science Recent Achievements

11/27/18

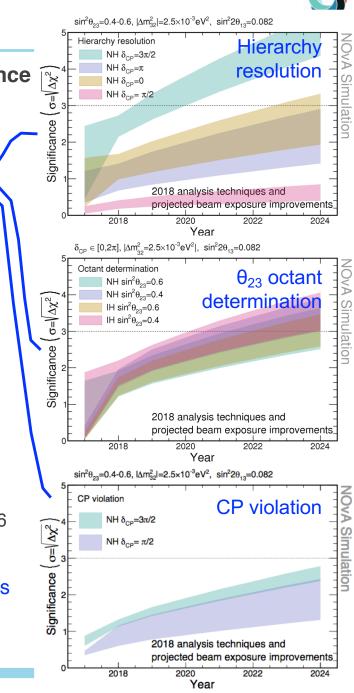
Neutrino Science 10 year plan

L. Hsu I PAC January 2019

Neutrino Science Goals:

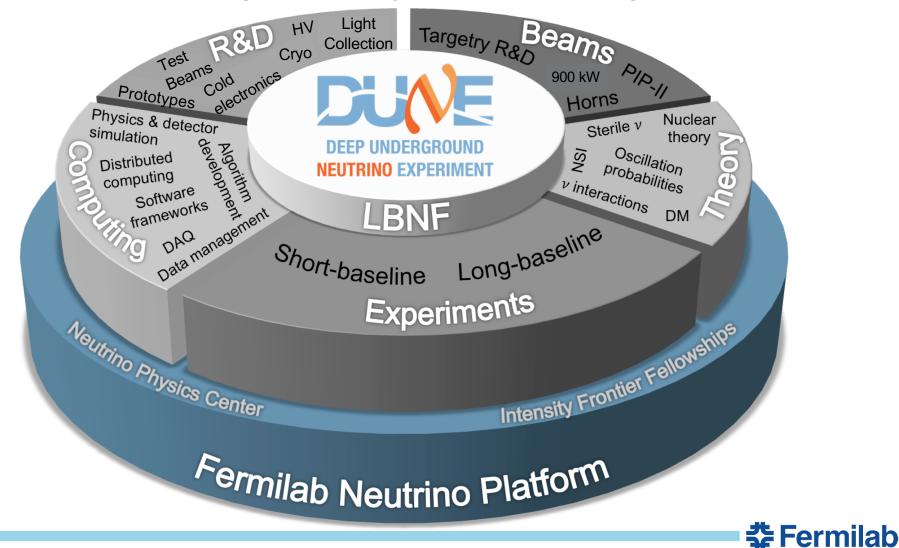
Deliver & exploit world's highest power beams for neutrino science

- PIP-I (700 kW), accelerator complex upgrades (900 kW), PIP-II (>1 MW),
 PIP-III (multi-megawatt)
- Continue exploration of neutrino mixing parameters with NOvA beam running through 2025, followed by DUNE


Fully exploit the short-baseline neutrino program:

- MicroBooNE, SBND and ICARUS complete a 3-detector suite to fully probe the sterile neutrino hypothesis
- Understand all we can about LAr technology & significantly advance our understanding of GeV-scale v-nucleus interactions
- See talks by Steve Brice and Ornella Palamara for more

Deliver LBNF/DUNE:


- Commission protoDUNE in time for beam operations at CERN see talk by Flavio Cavanna for more
- International Project Milestone: beam on with two LAr detectors in 2026
- See talk by Hugh Montgomery for more

Determine properties, masses, and mixing matrix of 3 known neutrinos (Hierarchy resolution, θ₂₃ octant determination, CP violation)

"All paths lead to DUNE" – for the next 10 years

DUNE is the highest priority project, with entire FNAL neutrino program working coherently towards building it

11/27/18

Precision Science 10 year plan

L. Hsu I PAC January 2019

Precision Science 10 year plan

- 1) Perform the most precise measurement of muon g-2
 - ✓ Complete the Muon g-2 Project
 - Collect data set 10x larger than Brookhaven experiment by 2019 and 20x larger by 2020
 - Publish first results exceeding BNL precision

2) Perform the highest sensitivity search for charged lepton flavor violation with Mu2e

- Complete the Mu2e Project by 2022 and develop a preliminary operations plan
- Collect a data set enabling the world's best limit on CLFV by 2023 and factor 10,000 improvement by 2026

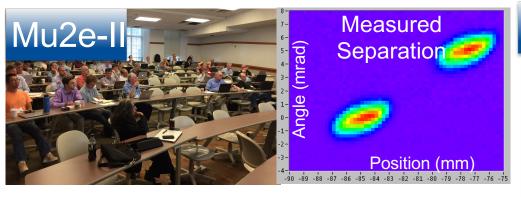
3) Provide high intensity and high quality beams for precision experiments

- Complete the Muon Campus by 2019
- Begin commissioning Mu2e beam line with protons by 2020

4) Plan the next generation of precision experiments at Fermilab

- ✓ Propose Mu2e-II upgrades to the PAC
- Secure funding to advance R&D for Mu2e-II and develop preliminary design in preparation for next P5
- Investigate new precision experiments for the muon campus as inputs to the Snowmass process

5) Facilitate the growth of a strong and vibrant precision science user community


- Execute hiring plan to ensure lab-based leadership in experimental operations and data analysis
- Lead development of tools for data processing and analysis for Muon g-2 by 2018 and Mu2e by 2019
- Provide additional office and lab space for the growing user community

6) Improve theoretical SM and BSM predictions for Precision Science observables

- Calculate leading order hadronic vacuum polarization contribution to Muon g-2 with total error <1%
- Develop models for new physics that have observable effects in current and future experiments

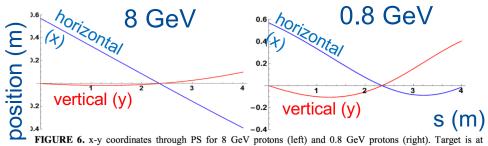
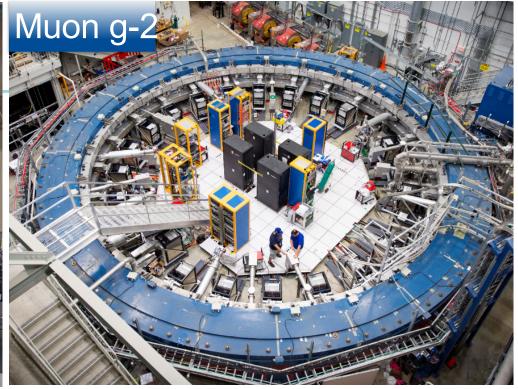



FIGURE 6. x-y coordinates through PS for 8 GeV protons (left) and 0.8 GeV protons (right). Target is at -2.35m

Theory

Most precise lattice-QCD calculation :

- $-K \rightarrow \pi l \nu$ form factor
- -u, d, s, and b-quark masses

-B0 and Bs-meson leptonic decay const. First calculation of:

-higher-order HVP contribution to muon g-2 - strong isospin breaking correction to the

11/27/18

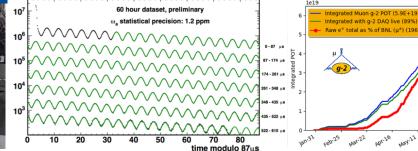
HVP contribution to g-2 at the physical upand down-quark masses

~30,000 straws complete HAB commissioned, TS Magnets arriving ~32 km scintillator extruded

Two workshops >70 participants each

Measured

Separation


Task force initiated to develop conceptual design for proton beamline and target

Proposal to use PIP2IT to measure

FIGURE 6. x-y coordinates through P5 for 8 GeV protons (left) and 0.8 GeV protons (right). Target is at -2.35m

Muon g-2

Finished commissioning experiment Collected 2x BNL in raw statistics FY18 Shutdown Upgrades: -Cryogenics, kickers, quads, momentum cooling wedge

Theory

Most precise lattice-QCD calculation : $-K \rightarrow \pi l \nu$ form factor

Multiple publications

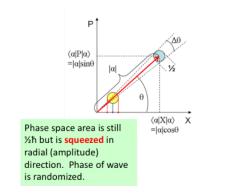
More in progress...

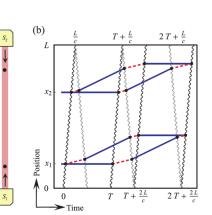
- strong isospin breaking correction to the HVP contribution to g-2 at the physical upand down-quark masses

11/27/18

Quantum Science 10 year plan

L. Hsu I PAC January 2019


Quantum Science Goals:


Leverage Fermilab's core capabilities to yield results in quantum science on short term while building for HEP in longer term

- Applications of Quantum Sensors: Adapt quantum technologies, including squeezing and entanglement, to enable new fundamental physics experiments.
- Superconducting Quantum Systems: Leverage Fermilab's expertise to advance superconducting materials and resonators for dramatic improvements in coherence times, quantum error correction, and scalability of superconducting quantum systems.
- Applications of Quantum Computing: Identify most promising HEP applications on near-term quantum digital and analog computers; develop algorithms and experience with state-of-the-art machines; find HEP applications with demonstrated quantum advantages that could evolve into "quantum accelerator" modules in HEPCloud.
- Develop quantum simulations: that express the foundational Quantum Science connections to black holes, wormholes, emergent spacetime, and quantum field theory.

(a)

Fermilab 11/27/18

Highlights of Recent Activities and Awards

See talks by: Panagiotis Spentzouris, Roni Harnik and Anna Grassellino and Jason Hogan for more details

Fermilab-led DOE QuantiSED grants:

- Develop qubits for single-photon readout for axion detector Aaron Chou
- SRF cavities to develop qubits with ultra-long coherence times Alex Romanenko
- Application of quantum computing simulations to particle theory Marcela Carena
- Quantum computers for machine learning Gabe Perdue
- Skipper CCD's for quantum imaging

DOE Early Career awards related to Quantum Science (2018):

- Qubits for single-photon readout for axion and neutrino detectors Daniel Bowring
- Skipper CCD's for 10-kg neutrino detectors Javier Tiffenberg

Backup

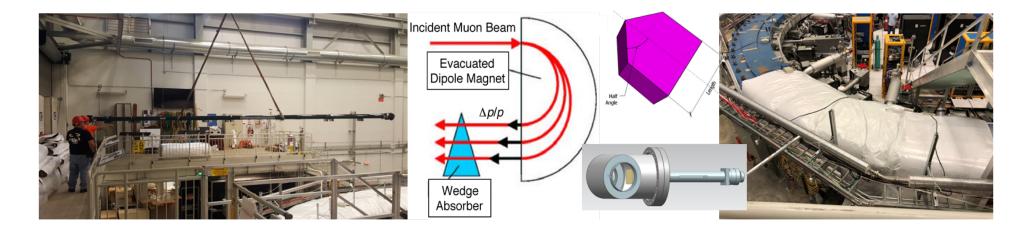
Software and Computing (LHC and HL-LHC)

- FNAL is responsible to deploy the US CMS T1 at a scale and availability consistent with the commitment to the Worldwide LHC Computing Grid
 - Custodial responsibility of > 50 PB of CMS data
 - Providing access to > 30 PB of disk and > 20,000 cores of compute power for CMS
- FNAL enables the US-CMS physics community to perform analysis on the LPC resources
 - > 700 users
- FNAL is a leader in the development of CMS software for reconstruction and analysis
 - Optimized simulation to reduce the needed computing resources and extend the physics capabilities of the experiment
 - (Only) experimental framework using multi-threading in production, running on GRID resources, commercial cloud resources and the US leadership class facility supercomputers
 - SW R&D to utilize GPUS and FPGAs for detector signal reconstruction like tracking
- FNAL is the leader in the development of computing infrastructure software for CMS
 - Covering central production and data handling infrastructure SW and cooperating with community efforts (*e.g.* Open Science Grid)
 - Involved in collaborations with industry and other science partners in utilizing Big Data technologies

Muon Precision Science Experiments

- Make ultra-precise measurements
- Sensitive to a_{μ} to 140 ppb
- >3σ discrepancy to >5σ
- 7 Countries, 34 Institutions
- 192 Collaborators

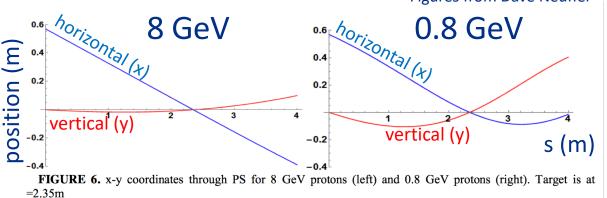
- Search for rare or forbidden processes
- Sensitive to $\mu^- N \rightarrow e^- N$ to 7×10^{-17}
- Factor of 10000 improvement
- 6 Countries, 40 Institutions
- 240 Collaborators

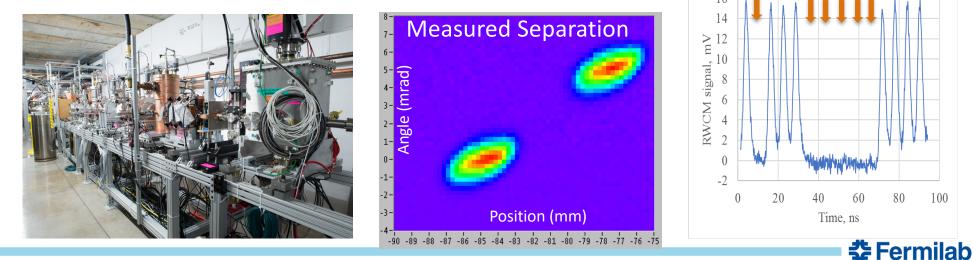


Goal 2: Perform the most precise measurement of muon g-2

 Collect a data set 10x as large as the Brookhaven E821 experiment (FY19)

FY18 Shutdown Upgrades


- Cryogenic upgrades for quench-free operations
- Electrostatic quadrupole improvements
- Redesign and refurbished in-ring kickers (aiming for 30% higher kick)
- Momentum cooling wedges installed in beamline (20-40% simulated increase in muon flux)


🚰 Fermilab

Goal 4: Plan the next generation of precision experiments at Fermilab

- ✓ FY18: Propose Mu2e-II upgrades to the PAC
- June: Directorate initiated Task Force-develop a conceptual design for the proton beam line and target
 Figures from Dave Neuffer
- -Chairs: S. Werkema, R. Zwaska
 -Main challenges: beam trajectory
 & 100 kW-capable target
 -Final report due early 2019

 Sep-2018 : Developed proposal to measure extinction performance of the beam chopper using PIP2IT – important for Mu2e-II

Goal 5: Facilitate the growth of a strong and vibrant precision science user community

- Lead efforts to develop user friendly access to data and tools for data processing and analysis sufficient for Muon g-2 by 2018 and for Mu2e by 2019 (FY19)
- Working to enable simulation production at High Performance Computing Centers such as NERSC (National Energy Research Scientific Computing Center at LBL) and ALCF (Argonne Leadership Computing Facility)
- Hired an Applications Physicist to further these efforts
- Collaborate with Scientific Computing Division to optimally access the Fermilab computing resources including data storage and job execution
 - · Provide feedback and testing for community tools in these areas
 - For example, g-2 uses POMS Production Operations Management Service a web based system for launching production workflows with monitoring and bookkeeping
- Muon g-2 and Mu2e participate in the twice-per-year FIFE (Fabric for Frontier Experiments) Workshops lead by SCD. These workshops provide training on the community tools and new features as well as a forum to give feedback.
- First release of Mu2e simulation using multi-threaded Geant4; at an HPC facility such as THETA (ANL) or CORI II (NERSC) -about 2.4x throughput compared to single threaded G4.
- Designed new workflows and data products for simulation, reconstruction and analysis
- Organized and executed a Mock Data Challenge in the summer of 2018 (MDC2018)
 - MDC2018 also enables us to do the first studies on alignment and calibration; these will start soon
 - Next generation tutorials will be based on the output of MDC2018
 - Planning underway for MDC2019 which will exercise more elements of alignment and calibration
- Developed a prototype conditions data base to support the alignment and calibration studies

25

Fermilab

Goal 6: Improve theoretical SM and BSM predictions for Precision Science Observables

- Calculate leading order hadronic vacuum polarization contribution to muon g-2 with total error below 1%(FY20)
- Develop models for new physics that have observable effects in Muon g-2 and Mu2e and beyond(FY26 and beyond)

Publications:

- Most precise lattice-QCD calculation of the $K \rightarrow \pi l \nu$ form factor. <u>https://arxiv.org/abs/1809.02827</u>
- Most precise lattice-QCD calculations of u, d, s, and b-quark masses.
 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.054517
- Most precise lattice-QCD calculations of B0 and Bs-meson leptonic decay constants. <u>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.074512</u>
- First lattice-QCD calculation of the higher-order HVP contribution to muon g-2 <u>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.094503</u>
- First calculation of the strong isospin breaking correction to the HVP contribution to g-2 at the physical up- and down-quark

masses https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.152001

Works in progress:

 Update of 2016 lattice-QCD calculation of light-quark connected contribution to muon g-2 with finer lattice spacing. (c.f. <u>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.034516</u>). Anticipate posting to arXiv in December.

🛠 Fermilab

Blank

Blank

