

High Level Organization of the SBN Program

Steve Brice

Fermilab Physics Advisory Committee Meeting

16 January 2019

Outline

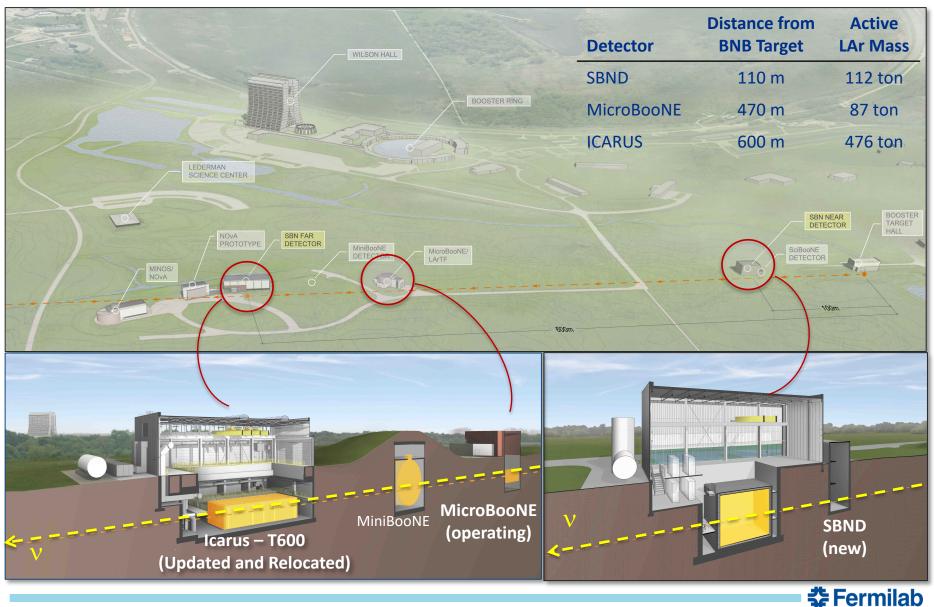
SBN Program Overview

- Location, Beamline, Physics
- Trail Blazing for DUNE

Progress on the SBN Detectors

- Scope and Milestones
- Far Detector (ICARUS T600) Progress
- Near Detector (SBND) Progress
- SBN Director's Review (Dec 2018)

SBN Multi-Institution MOU

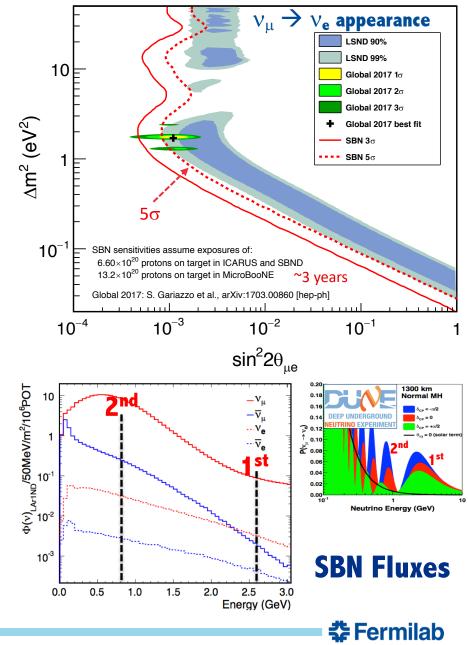

- Philosophy behind the MOU
- Parties to the MOU
- Annexes to the MOU

SBN Collaboration Governance

- SBN Program Office
- SBN Oversight Board
- SBN Institutional Board
- SBN Joint Working Groups

🚰 Fermilab

The Short Baseline Neutrino (SBN) Program


Steve Brice I High Level Organization of the SBN Program

Program Goals

- Neutrino oscillation measurements in both $\nu_{\rm e}$ appearance and ν_{μ} disappearance channels
 - -5σ coverage of LSND signal and best global fits
 - Requires near-far detector comparison
- ν-argon cross-sections
 - SBN will have world's largest dataset of v-argon interactions for the foreseeable future
- Technology development
 - SBND development provides a next step beyond ProtoDUNE SP in path to DUNE (e.g. cold electronics)
 - Transferable development of analysis tools

Collaboration and community building

- Direct experimental activity with LAr for the global community working toward DUNE.
- International collaborative engineering teams on detectors and infrastructure (e.g. cryogenics)

SBN Blazing a Trail for DUNE

- Physics
 - An SBN discovery of a sterile neutrino would reshape the DUNE physics program in a very exciting way

Technology

- SBND and the ProtoDUNEs provide a opportunity to iterate on the DUNE cryostat design
- High Voltage development in MicroBooNE, the ProtoDUNEs, and SBND
- Joint cold electronics development in the ProtoDUNEs and SBND
- A full suite of LAr TPC algorithm development started in ICARUS, ArgoNeut, LArIAT, and MicroBooNE, will be perfected in the SBN Program, and ready for DUNE use (DAQ, data compression, reconstruction, particle ID,....)
- Data from LAr detectors present very significant computing challenges data volume and compression, algorithm speed, PID challenges and deep learning techniques,....

Internationalization

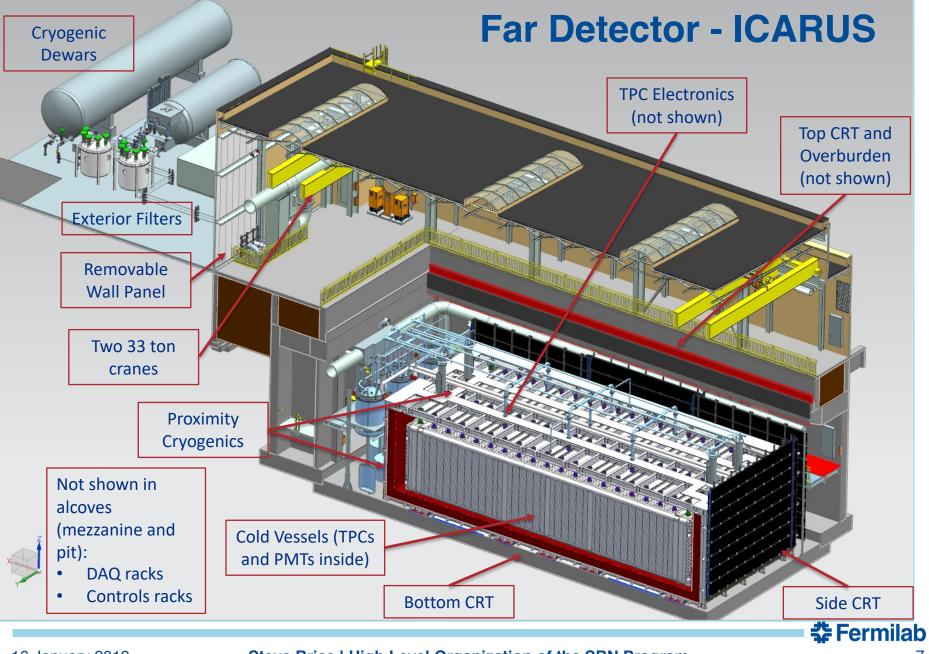
- SBN Multi-Institution MOU is a model for how we hope to form international DUNE agreements
- ICARUS vessel three party (INFN, CERN, DOE) loan agreement
- Opportunity to switch to a review system where the international stakeholders jointly conduct the reviews
- Established equivalency between CERN and FNAL for many safety training courses
- Acceptance of EU codes for mechanical and cryogenics

Community Development

- Training the community that will deliver the DUNE physics
- Students have theses on SBN whilst also doing work for DUNE
- Comparable to how the Tevatron program (and others) gave the LHC program a running start

🛟 Fermilab

SBN Program Scope


Construction Phase:

- Design and construct two buildings complete
- Refurbish ICARUS T600 detector complete
- Design and construct new ICARUS components (e.g. CRT) final fabrication
- Install ICARUS detector on track since arrival of cold shield
- Design, construct, and install infrastructure (eg cryogenics) on schedule
- Design and construct SBND detector moving to assembly phase
- Install SBND detector preparing to start first installations in early CY2019

Operations Phase:

- Transition to operations as each system receives partial Operational Readiness Clearance (pORC)
- Two major transitions: pORCs to cold commission (LAr fill) ICARUS (mid-CY 2019) and SBND (mid-CY 2020)
- Commissioning, physics operations and physics analysis of ICARUS, MicroBooNE and SBND detectors

🗲 Fermilab

16 January 2019

Steve Brice I High Level Organization of the SBN Program

ICARUS T600 Contributions

	DOE	CERN	INFN
T600 Refurbishing including new PMTs, Cryostats		50%	50%
TPC Electronics			100%
T600 Transport to FNAL		100%	
Cosmic Ray Tagger	33%	33%	33%
Cryogenics	45%	45%	10%
DAQ	50%		50%
Integration and Installation	33%	33%	33%
Civil Construction	100%		
Overburden	100%		
Cryogen Purchase	100%		

All fractions are approximate (~10% level)

16 January 2019

Steve Brice I High Level Organization of the SBN Program

‡ Fermilab

Key SBN Milestones - ICARUS

Milestone	Description	Baseline date
I-1	ICARUS detectors are ready to fill with liquid argon	May 2019
I-2	ICARUS detectors are filled with liquid argon and ready for detector commissioning (LAr purity adequate for physics has been achieved)	Nov 2019
I-3a	ICARUS detectors are ready for physics data - CRT is operational	Jan 2020
I-3b	ICARUS detectors are ready for physics data - Shielding in place	Feb 2020

Baseline dates for all four ICARUS milestones were set in March 2018. See intermediate milestone slides later and in backup.

16 January 2019

Fermilab

Far Detector Installation

- Installation progress (CERN/FNAL/INFN):
 - ✓ Cold vessel vacuum tested
 - ✓ Cold vessels rigged into building (Emmert Intl.)
 - Cable chimneys installed, continuity tested and vac. tested
 - ✓ Top cold shield installed and tested
 - ✓ Cryogenics platform installed
 - ✓ Warm vessel roof installed
 - Proximity cryogenics delivered to Fermilab
 - Installation of crosses and electronics feedthroughs in progress
 - Proximity cryogenics installation starts Jan 28

Vessels Rigged into building

ICARUS Vessel 2 parked west of

Rigging the ICARUS Vessels

16 January 2019

Steve Brice I High Level Organization of the SBN Program

Far Detector Installation

- Installation progress (CERN/FNAL/INFN):
 - ✓ Cold vessel vacuum tested
 - ✓ Cold vessels rigged into building (Emmert Intl.)
 - ✓ Cable chimneys installed, continuity tested and vac. tested
 - ✓ Top cold shield installed and tested
 - ✓ Cryogenics platform installed
 - Warm vessel roof installed
 - ✓ Proximity cryogenics delivered to Fermilab
 - Installation of crosses and electronics feedthroughs in progress
 - Proximity cryogenics installation starts Jan 28

ICARUS Progress

- TPC electronics production in final phase (INFN)
 - On track to complete delivery to FNAL by May
- Cosmic Ray Tagger (CRT)
 - Bottom modules installed in 2017 (Double Chooz spares courtesy of U. Chicago)
 - Top module production has started at Frascati (CERN/INFN)
 - First modules complete in January 2019
 - Complete assembly in summer 2019
 - Sides re-use MINOS far detector modules (FNAL/US), completing design of SiPM board
 - SiPMs ordered
 - Review of final prototype in January 2019
 - Common electronics for top, sides and SBND
 designed by U. Bern, commercialized by CAEN
 - Common DAQ/event builder code

Side CRT SiPM Board and module cutting @ Wideband lab

Steve Brice I High Level Organization of the SBN Program

Fermilab

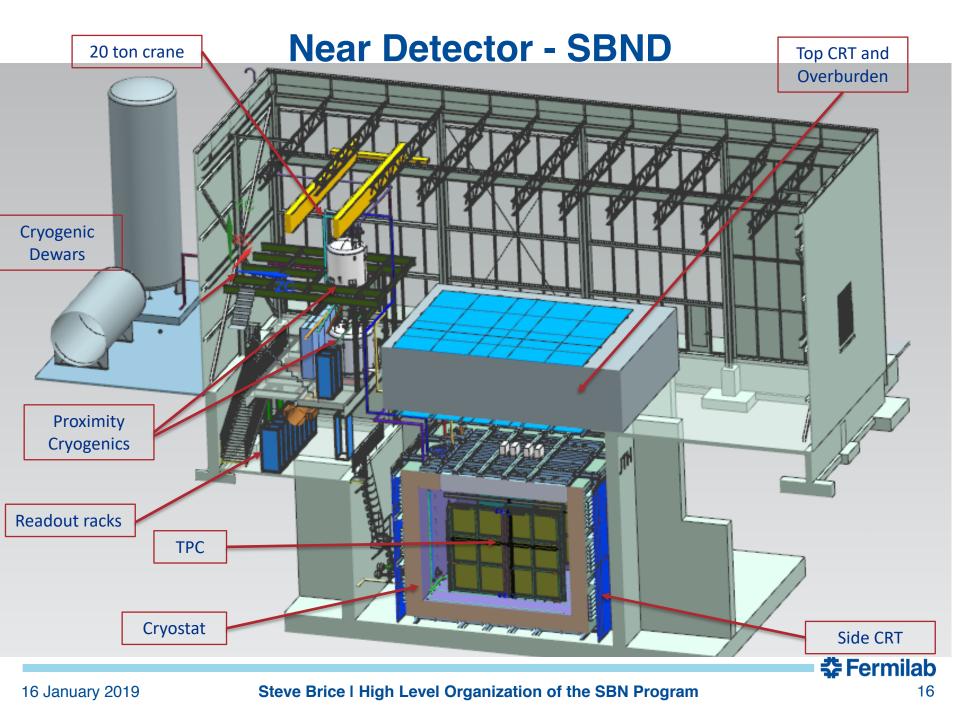
Top CRT Production in

Frascati

ICARUS Milestones to I-1 Ready to Fill

Intermediate Milestone	Owner	Baseline Date	Forecast Date		Actual Date
Vessels rigged into building	P. Wilson	16-Aug-2018		\checkmark	16-Aug-2018
Manholes welded and vacuum test successful	C. Montanari	10-Oct-2018		\checkmark	11-Oct-2018
Warm Vessel roof complete	C. James	15-Nov-2018		\checkmark	31-Oct-2018
Cryo Platform complete	C. James	15-Dec-2018		\checkmark	04-Oct-2018
Proximity cryogenics installation begins	B. Norris	15-Jan-2019	30-Jan-2019	а	
DBB & flanges installation complete and tested	A. Fava	15-Feb-2019	21-Feb-2019	b	
Cold proximity cryogenics installation complete	B. Norris	15-Apr-2019	23-Apr-2019	С	
1 st T300 readout installation complete	A. Fava	15-Mar-2019	1-Apr-2019	d	
All detector readout installed	A. Fava	1-May-2019	31-May-2019	е	
Begin vacuum pumping	C. Montanari	15-Jul-2019	15-May-2019		
Cryogenic operation approved	B. Norris	15-Jul-2019	28-Jun-2019		
11: ICARUS detectors ready to fill with LAr	P. Wilson	30-May-2019	28-Jun-2019	f	

16 January 2019


Steve Brice I High Level Organization of the SBN Program

‡ Fermilab

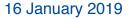
Notes on milestones to I-1

- a) Arrival of subcontractor delayed by CERN to ensure transport of equipment was completed in advance with schedule contingency
- b) Delivery of last cross and PMT flanges from INFN/CERN completed by end of January
- c) Start delayed by 2 weeks, see a) above
- d) Added contingency in materials transport
- e) Added contingency in materials transport
- f) Baseline for I-1 set in March 2018 when delays in delivery of cold shields has not been completely realized. Detailed intermediate milestones were defined and baselined in July 2018

SBND Contributions

	DOE	US NSF	CERN	INFN	UK UKRI	Switze rland	LANL LDRD	Brazil	
TPC Design and Fabrication		50%			50%				
TPC Electronics	85%	15%			Х				
PMT System							100%		
Light detection (enhance.)		Х			Х			Х	
Calibration Laser						100%			
Cosmic Ray Tagger						100%			
Cryogenics	50%		50%						
Cryostat	Х		Х	Х					
DAQ	100%								
Integration and Installation	90%	Х			Х		Х		
Civil Construction	100%								
Overburden	100%		All	All fractions are approximate (~10% level)					
Cryogen Purchase	100%		X = contribution but specific fraction tbd					n tbd	

16 January 2019


Steve Brice I High Level Organization of the SBN Program

‡Fermilab

Key SBN Milestones - SBND

Milestone	Description	Baseline Date
S-1	SBND is ready for transport from Dzero Assembly Building to the SBN ND hall	Aug 2019
S-2	SBND detector is ready to fill with liquid argon	July 2020
S-3	SBND detector is filled with liquid argon and ready for detector commissioning (LAr purity adequate for physics has been achieved)	Feb 2021
S-4a	SBND detectors are ready for physics data - CRT is operational	March 2021
S-4b	SBND detectors are ready for physics data - Shielding in place	April 2021

Baseline dates for S-2 through S-4b were set in Nov 2018 after schedule re-plan including float relative to forecast dates. See intermediate milestone slides later and in backup

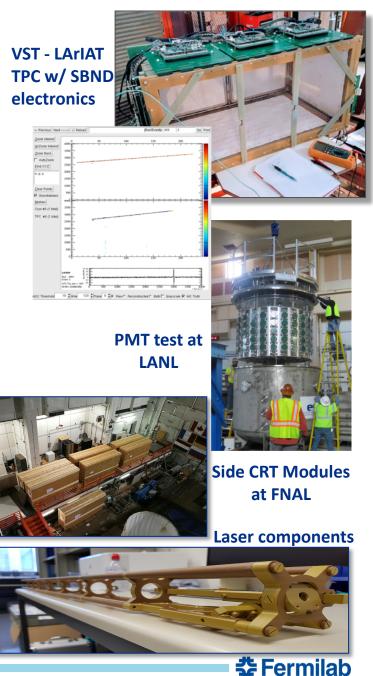
Fermilab

SBND TPC Progress

Joint responsibility of UK, US-NSF, FNAL

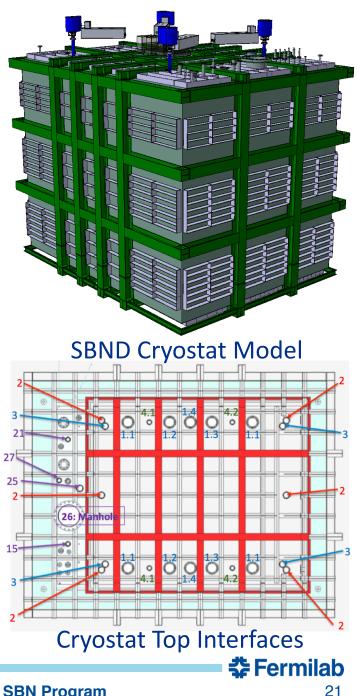
- UK: Cathode plane, two anode planes, HV feedthrough
- US-NSF: field cage, two anode planes, HV feedthrough
- FNAL: support integration and assembly Recent Milestones:
- ✓ July 2018 Cathode delivered to FNAL
- ✓ Aug 2018 1st UK anode plane completed
- ✓ Aug 2018 1st US anode plane completed
- ✓ Sept 2018 Field cage completed
- ✓ Oct 2018 1st UK anode delivered to FNAL
- ✓ Sept 2018 Test of assembly fixture at FNAL
- ✓ Nov 2018 2nd US anode plane completed
- Dec 2018 US anodes shipped to FNAL
- Jan 2019 2nd UK anode delivered to FNAL

1st Manchester APA at FNAL in DZero clean tent


Packed Anode Plane @ Yale

Assembly facility at Dzero Assembly building

SBND Progress


- TPC electronics (BNL, Columbia U.)
 - Using same FE ASIC as ProtoDUNE
 - Qualified commercial off the shelf ADC for cold operation – excellent lifetime
 - Vertical slice test of prototype electronics and DAQ w/LArIAT chamber in FNAL test beam
 - Incorporating lessons from ProtoDUNE into production design
 - Passed production readiness review on Nov 29
- PMT system components at LANL
 - Test of all PMTs in LAr late 2018
 - Mounting system and DAQ in hand
- CRT modules in production at Bern
 - Electronics designed by Bern (avail. from Caen)
 - Bottom and side modules at Fermilab
 - Top modules in production

Steve Brice I High Level Organization of the SBN Program

SBND Cryostat

- Joint responsibility of CERN, FNAL and INFN
- 3rd generation prototype for DUNE designed by CERN:
 - WA105 1x1x3 → protoDUNEs → SBND
 - Steel structure design updated to match LBNF/DUNE as closely as possible
- Status:
 - Final design of steel structure nearly complete
 - Ready to start final design study for membrane cryostat by GTT

Steve Brice I High Level Organization of the SBN Program

SBND Milestones to S-1 SBND ready to move


Intermediate Milestone	Owner	Baseline Date	Forecast Date (Schedule)		Actual Date
First set of APAs shipped to Fermilab	K. Mavrokoridis	24-Sept 2018	28-Dec-2018	а	
PO for COTS ADCs placed	H. Chen	10-Oct-2018		\checkmark	30-Oct-2018
All TPC Components at Fermilab	K. Mavrokoridis	1-Mar-2019	26-Feb-2019		
Complete atf assembly at DAB	J. Zennamo	1-May-2019	8-Apr-2019		
50% of motherboards delivered to Fermilab	H. Chen	15-May-2019	15-Apr-2019		
APAs and CPAs installed in atf	J. Zennamo	15-Jun-2019	23-May-2019		
Field cage assembly complete	J. Zennamo	15-Jul-2019	2-Jul-2019		
Cold electronics installed and tested	H. Chen	23-Aug-2019	8-Aug-2019		
S1: TPC ready to move to SBN ND	A. Schukraft	30-Aug-2019	8-Aug-2019		

a) US APA group decided to ship both their APAs together, delaying shipment of the first from September to December. This should have little to no impact on completion the final assembly

Fermilab

SBND Milestones to S-2 Ready to Fill

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
GTT Design Study Begins	M. Nessi	1-Feb-2019	1-Jan-2019	
Delivery of warm box steel	M. Nessi	15-Jun-2019	30-Apr-2019	
Warm vessel installation complete	M. Nessi	15-Jul-2019	29-May-2019	
TPC Transport to ND building complete	J. Zennamo	15-Sept-2019	16-Aug-2019	
Cryostat material arrives at Fermilab	M. Nessi	1-Oct-2019	22-Aug-2019	
Cryostat top plug is ready to attach to atf	M. Nessi	1-Nov-2019	23-Sept-2019	
Membrane Cryostat Completed	M. Kim	1-Mar-2020	22-Jan-2020	
Plug welded to cryostat	M. Kim, J. Zennamo	15-Apr-2020	6-Mar-2020	
Cryogenic operation approved	M. Geynisman	1-Jul-2020	1-Jun-2020	
S2: SBND detector is ready to fill with liquid Argon	A. Schukraft	15-Jul-2020	1-Jun-2020	

Steve Brice I High Level Organization of the SBN Program

‡ Fermilab

Technical Summary & Outlook

- Excellent technical progress for ICARUS
 - Installation remains on track since delivery of the cold shield components in April
 - Updated planning process is keeping it on track
 - Electronics readout delivery on track, installation starting (flanges)
 - Proximity cryogenics (near and far) delivered to Fermilab, ready to install in January
 - On track to complete milestone I-1, ready to fill, by June 2019
- Excellent technical progress for SBND
 - TPC components arriving at Fermilab
 - TPC electronics production underway
 - TPC assembly process has started
 - Cryostat design and construction plan being completed
 - On track to complete milestone S-1, detector ready for transport, by August 2019
- The biggest technical risks have been retired or are near retirement:
 - ✓ Installation of T600 vessels
 - \checkmark Completion of SBND APA wire winding
 - Delivery of APAs to Fermilab

🛠 Fermilab

SBN Director's Review

- A Director's Review for SBN was held Dec 17-19 2018
- This review focused on the complete integrated schedule and the DOE High Energy Physics cost of the following program elements:
 - Construction and installation of the ICARUS detector systems;
 - Construction and installation of the SBND detector systems and cryostat;
 - Construction and installation of the necessary support infrastructure such as cryogenic systems, common DAQ and overburden;
 - Commissioning plan and transition to experimental operations plan.
- The focus of this review was the schedule forecast for completing installation, commissioning and transition to operations for ICARUS and SBND and the associated costs borne by the DOE office of High Energy Physics. Topics included schedule, US costs, management, ES&H, and technical readiness to execute the SBN program.
- Review web page

🛟 Fermilab

SBN Director's Review Closeout Exec. Summary

- The review committee was pleased with the progress made since the June 2018 review which focused primarily on schedule. The committee congratulates the team for the great progress in getting the far detector modules installed. Progress on the near detector components is also quite impressive.
- The committee's response to the Review Charge questions was nearly unanimously affirmative, with only a few minor caveats noted.
- Schedules for reaching each of the key milestones were presented. Most of the recommendations from the previous review have been addressed. The contributions from our international partners were particularly appreciated. The main conclusion of the review was that almost all subsystems are ontrack to meet the baseline schedule presented in June, resulting in the far detector being ready to fill in Summer 2019 and the near detector approximately one year later.
- The committee was satisfied with the Program's attention to ES&H.
- The committee reviewed outstanding risks, that if realized would impact the ability of the program to keep on schedule. The committee noted that a number of key risks have been retired.
- Two main areas of concern were identified. The first is the funding available for FY19 work. A request for additional funding of \$3.9M was made to DOE in FY18. If this funding is not made available within FY19Q2, key procurements for both detectors will have to be delayed, resulting in corresponding delay of meeting milestones.
- The second area of concern remains the need to begin the final design of the near detector cryostat so that the schedule for the construction of the cryostat does not significantly delay achieving the milestones S2 and S3.
- The committee encourages the Program management team to continue to work with all program contributors to develop robust plans for commissioning, transition to operations and ultimately steady state operation of both the near and far detectors of the SBN Program.

🛠 Fermilab

SBN Multi-Institutional MOU

- A Memorandum of Understanding (MOU) for building of the SBN program is in draft form
- The expectation is that it will be signed by the parties contributing to building the SBN program
- Such a multi-institution document is unusual for the US DOE
- Blazes an important trail for future DUNE agreements

27

SBN Multi-Institutional MOU Opening

Memorandum of Understanding for Collaboration in the Short-Baseline Neutrino Program

between

The Fermi National Accelerator Laboratory, a United States Department of Energy National Laboratory, managed and operated by Fermi Research Alliance, in Batavia, Illinois (hereinafter referred to as "Fermilab"), as the Host Laboratory

on the one hand,

and

the Funding Agencies/Research Institutions and Universities participating in the Short-Baseline Neutrino Program at Fermilab

on the other hand

for the purpose

of collaboratively carrying out a jointly funded and supported physics research program at Fermilab. The Parties mentioned will individually be referred to as a "SBN Participant" and collectively as the "SBN Participants"

🛟 Fermilab

SBN Multi-Institutional MOU Preamble

Preamble

As recommended by the 2014 report of the Particle Physics Project Prioritization Panel and the European Strategy for Particle Physics Update 2013, Fermilab has developed an international Short-Baseline Neutrino Program ("SBN Program") to pave the way for substantial international involvement in the future Long-Baseline Neutrino Facility and the associated Deep Underground Neutrino Experiment ("LBNF/DUNE");

- a) The SBN Participants wish to collaborate in the construction, operation, and physics data analysis using a set of liquid argon detectors for the SBN Program that will be deployed in the Fermilab Booster Neutrino Beamline (BNB);
- a) This Memorandum of Understanding (hereafter referred to as "MOU") is a non-legally binding agreement that records contributions by SBN Participants to the SBN Program, it being understood that the SBN Participants recognize that the success of the SBN Program depends on all the SBN Participants adhering to its provisions.

🛠 Fermilab

Parties to the SBN MOU

- The Parties to the SBN MOU are the agencies, labs, and universities providing the resources to build the program
 - Fermi National Accelerator Laboratory ("Fermilab");
 - The National Science Foundation of the United States ("NSF")*;
 - European Organization for Nuclear Research ("CERN");
 - Istituto Nazionale di Fisica Nucleare ("INFN");
 - United Kingdom Research and Innovation ("UKRI");
 - University of Bern, Switzerland ("Bern");
 - Los Alamos National Laboratory through its associated Laboratory Directed Research and Development program ("LANL");

*NSF contributions will be listed, but the NSF will not be signing this MOU

 There are about 60 institutions in the SBN collaboration that will operate the detectors and analyze the data from them

🛟 Fermilab

Proposed Annexes to the SBN MOU

- Annex 1: Institutions Collaborating in the SBN Program and Names of Their Contact Persons
- Annex 2: SBN Collaboration Organization Structure
- Annex 3: SBN Program Governance
- Annex 4: SBN Cryogenics, SBND Cryostat, and ICARUS Cosmic Ray Tagger
- Annex 5: SBND Cosmic Ray Tagger
- Annex 6: Participation of SBN Participant in Each SBN Subproject for ICARUS and SBND
- Annex 7: Ownership of Equipment to the SBN Program
- Annex 8: Financial Guidelines for the SBN Program

SBN Organization (E-1100)

- A set of organizational structures defined to...
 - oversee the completion of the ICARUS and SBND detectors,
 - develop plans and procedures for commissioning and operation
 - coordinate efforts toward combined physics analyses in the future.
 - 1. SBN Program Office
 - 2. SBN Oversight Board (SBN-OB)
 - 3. SBN Institutional Board (SBN-IB)
 - SBND Collaboration
 - ICARUS Collaboration
 - Unaligned collaborators
 - 4. SBN Joint Working Groups

SBN Program Office

 Purpose: Oversee construction on the SBN near and far detector buildings, install the far detector (ICARUS T600), design, construct, and install the near detector (SBND)

Program Support: Program Coordinator – *Peter Wilson* Deputy Coordinator – *Cat James* Program Engineer – *Barry Norris* Program Electrical Coordinator – *Linda Bagby* Program Integration Engineer – *Andy Stefanik* Logistics and Risk Manager – *Michael Dinnon* Project Controls – *Ken Domann* Financial Officer – *Molly Anderson* Administrative Support – *Etta Johnson* ES&H Coordinator – *Angela Aparicio* CERN Safety Contact – *Olga Beltramello (CERN)*

Technical Coordinators: SBND – *Brian Rebel*

Anne Schukraft - deputy

ICARUS – Claudio Montanari, Angela Fava – deputy

Infrastructure – Cat James

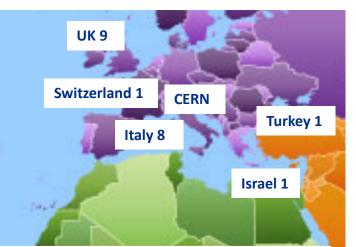
SBN Oversight Board (SBN-OB)

- **Purpose:** The SBN-OB is internal to SBN and provides a key forum for crosscollaboration communication or agreement development on issues relevant to construction, commissioning, operations, data management, and analysis.
- Membership: The group consists of
 - ICARUS and SBND spokespersons
 - SBN collaborators selected to provide good representation of the international groups making major contributions to the ICARUS and SBND detectors,
 - Italy-INFN
 - US-DOE and NSF
 - UK-UKRI
 - Switzerland
 - CERN
 - As Host Lab, the initial Chair of the board is the head of Fermilab Neutrino Division

• Timeline:

- Meetings held quarterly (May 15, Sept 21, Nov 30 in 2018)
- Currently developing an agreement on data sharing, common analyses and publication

🚰 Fermilab


SBN Institutional Board (SBN-IB)

- **Purpose:** The SBN-IB provides a forum for program-wide communication on issues relevant to the Program. Procedures, policies, and bylaws covering joint aspects of operation, data sharing, data analysis, publications, etc. can be brought to this body for deliberation or developed from within the group. Agreements developed within the SBN-IB will need to return to the individual collaborations for final ratification.
- **Membership:** The SBN-IB will consist of one member from each institution participating in the SBN Program. Each institution's representative is selected by that institution and communicated to the IB chairperson who will maintain the official list of membership and mailing list. The chairperson will be elected by the members of the IB from within its membership.
- **Timeline:** Gina Rameika is serving as interim SBN-IB chair. The first meeting was Sept 22. Gina's first task is to run an election for SBN-IB chair. The SBN-IB signals the formal start of collaboration

🗲 Fermilab

SBN Collaborators and Institutions

241 collaborators from 7 countries

139 Senior Scientists46 Postdocs56 Graduate Students

16 January 2019

Steve Brice I High Level Organization of the SBN Program

Fermilab

SBN Joint Working Groups

- **Purpose:** A set of SBN Joint Working Groups are needed to co-develop many key aspects of SBN operations and physics analysis. Several joint working groups already exist making extensive use of the experience running MicroBooNE and ICARUS
 - SBN Analysis: Explore how combined SBN physics analysis for sterile neutrino oscillation searches can be most effectively performed. Work focuses on implementing a three detector simulation, building reconstruction and analysis tools within a common framework, and developing an end-toend common analysis scheme in preparation for real data exploitation.
 - SBN DAQ and Data Pre-processing: Prepare the infrastructure for the efficient collection of high quality data with ICARUS and SBND using common strategies whenever possible.
 - SBN Slow Controls: Compare Slow Controls needs and designs and identify common hardware and software solutions for ICARUS and SBND.
 - SBN Cosmic Ray Tagger: Work on the CRTs of both detectors including a common analysis of CRT data and bringing in experience from MicroBooNE.
 - **SBN Offline computing:** Work on data storage, processing and distribution
 - New SBN Working Groups shall be set up as needed by the SBN-OB with the intent of spanning all detector subsystems
- Membership: The Working Groups are open to all participants in the SBN Program. For each Working Group the SBN-OB will identify a set of conveners to lead the activities of the group and report progress to the SBN-OB and the collaborations.

🛟 Fermilab

Summary

- SBN construction and installation now progressing well
 - There were some early delays
 - Now have loan agreement formed and ICARUS vessels rigged
 - Need to reach agreement on SBND cryostat
- SBN Multi-Institutional MOU drafted and being iterated
 Important trail blazing for DUNE
- SBN Governance structures in place and working.

Backup Slides

16 January 2019

Steve Brice I High Level Organization of the SBN Program

I1: ICARUS detector is ready to fill with liquid argon

ICARUS is ready to fill when the following tasks are completed:

- Cold vessels are installed
- Chimneys are installed
- Cold shield top is installed and circuits pressure tested
- Warm vessel top is installed including guard rails and decking
- Crosses and feedthroughs are installed and tested
- Cryogenics components and piping are installed
- Cryogenics controls, safety, and alarm systems tested
- All cryogenic vessels and piping have passed safety reviews
- High voltage feed through is installed
- Electronics are installed
- CRT bottom and side panels are installed
- Slow Control System is tested
- The procedure for LAr delivery and quality control is approved

🌫 Fermilab

I2: ICARUS detector is filled with liquid argon and ready for physics commissioning (LAr purity adequate for physics has been achieved)

ICARUS is ready for final physics commissioning when the following criteria have been met:

- Liquid argon level is at the nominal operating value in the cryostat
- Liquid argon level is maintained at nominal operating value
- Liquid argon is circulating through the pumps
- TPC High voltage at nominal for an extended period of time
- Electronics passes quality control tests
- Gas analyzers register no impurities in the liquid argon
- Electron lifetime is > 3 ms
- PMT signals observed in time with beam
- Cosmic tracks are observed
- DAQ throughput demonstrated for >5 Hz operation
- The trigger system is operational
- Data storage, data logging, and online data monitoring are functional
- Run control system is operational

🌫 Fermilab

I3a: ICARUS detectors are ready for physics data - CRT is operational

ICARUS is ready for physics data-taking when the following criteria have been met:

- TPC is ready for physics operation
- Cryogenics are ready for stable operation
- Trigger system functionality is verified
- Run plan is approved
- CRT electronics passes quality control tests
- CRT passes safety reviews
- CRT is integrated into the DAQ data stream
- CRT top panels are in place
- Cosmic ray muons can be tracked between CRT panels and the TPC

I3b: ICARUS detectors are ready for physics data - Shielding is in place

This milestone is met when the following criteria have been met:

- CRT is ready for operation
- Shielding blocks are in place

16 January 2019

Steve Brice I High Level Organization of the SBN Program

S1: SBND is ready for transport from D0 Assembly Building to the SBN ND hall

SBND is ready for transport when the following tasks are completed:

- APAs are installed in assembly and transport frame
- Light reflecting foils are installed in the CPA
- CPA is installed in assembly and transport frame
- Field cage is installed in assembly and transport frame
- Field cage, CPA and APA electrical connections are tested
- Cold electronics boards and cabling are connected and tested
- APA ground mesh is installed
- Assembly and transport frame is wrapped for transport

S2: SBND detector is ready to fill with liquid argon

SBND is ready to fill when the following tasks are completed

- Warm vessel is installed
- Cold cryostat is installed
- Cold cryostat welds pass leak check
- Cryostat plug is complete
- Cryostat plug is attached to the TPC
- Cryostat plug and TPC are inserted into the cryostat
- Cryostat plug is welded to the cryostat
- Cryogenics components and piping are installed
- Cryogenics controls, safety, and alarm systems tested
- All cryogenic vessels and piping have passed safety reviews
- High voltage feed through is installed
- Warm electronics is installed
- Warm and cold electronics pass quality control tests
- CRT bottom and side panels are installed
- CRT electronics pass quality control tests

🛟 Fermilab

S3: SBND detector is filled with liquid argon and ready for physics commissioning (LAr purity adequate for physics has been achieved)

SBND is ready for final physics commissioning when the following criteria have been met:

- Liquid argon level is at the nominal operating value in the cryostat
- Liquid argon level is maintained at nominal operating value
- Liquid argon is circulating through the pumps
- TPC High voltage at nominal for an extended period of time
- Warm and cold electronics pass quality control tests
- Gas analyzers register no impurities in the liquid argon
- Electron lifetime is > 3 ms
- PMT signals observed in time with beam
- Cosmic tracks are observed
- DAQ throughput demonstrated for >5 Hz operation
- The trigger system is operational
- Data storage, data logging, and online data monitoring are functional
- Run control system is operational

🌫 Fermilab

S4a: SBND detectors are ready for physics data - CRT is operational

SBND is ready for physics data-taking when the following criteria have been met:

- TPC is ready for physics operation
- Cryogenics are ready for stable operation
- Trigger system functionality is verified
- Run plan is approved
- CRT electronics passes quality control tests
- CRT passes safety reviews
- CRT is integrated into the DAQ data stream
- CRT top panels are in place
- Cosmic ray muons can be tracked between CRT panels and the TPC

S4b: SBND detectors are ready for physics data - Shielding is in place

This milestone is met when the following criteria have been met:

- CRT is ready for operation
- Shielding blocks are in place

16 January 2019

Steve Brice I High Level Organization of the SBN Program

ICARUS Milestones to I-2 Detector Filled

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Cold shield cooldown complete	C. Montanari	7-Aug-2019	15-Jul-2019	
Vessels filled with LAr, ready for HV	M. Geynisman	30-Sept-2019	10-Sept-2019	
Drift HV operational	F. Garcia	15-Oct-2019	30-Sept-2019	
PMTs operational	G. Raselli	30-Oct-2019	15-Oct-2019	
Cryogenics commissioning complete	M. Geynisman	30-Nov-2019	22-Oct-2019	
Cosmic tracks are observed in the TPC	A. Fava	30-Nov-2019	22-Oct-2019	
I2: detector is filled with liquid argon and ready for physics commissioning (LAr purity adequate for physics has been achieved)	P. Wilson	30-Nov-2019	22-Oct-2019	

ICARUS Milestones to I-3a ready for physics data – CRT operational

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Complete installation of Side CRT modules (a)	A. Schukraft	31-July-2019	28-Jun-2019	
Top CRT panels delivered to Fermilab	U. Kose	30-Sept-2019	31-Jul-2019	
Slow controls operational for all detector systems	K. Biery	31-Oct-2019	30-Sept-2019	
DAQ operational with >5Hz output	K. Biery	31-Oct-2019	30-Sept-2019	
Detector system timing synchronized with beam	K. Biery	30-Nov-2019	31-Oct-2019	
Trigger system operational	A. Guglielmi	31-Dec-2019	30-Nov-2019	
Top CRT panels are installed and ORC'ed	U. Kose/A. Fava	31-Jan-2020	5-Dec-2019	
I3a: ICARUS detectors are ready for physics data – CRT is operational	P. Wilson	31-Jan-2020	5-Dec-2019	

Notes:

a) This milestone is currently at T4 in the schedule file. Will promote to T3 at the next schedule statusing

Fermilab

ICARUS Milestones to I-3a ready for physics data – shielding in place

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Shielding blocks in place	C. James	28-Feb-2020	6-Feb-2020	
I3b: ICARUS detectors are ready for physics data – Shielding in place	P. Wilson	28-Feb-2020	6-Feb-2020	

SBND Milestones to S3 Detector Filled

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Laser system installation complete	I. Kreslo	1-Oct-2020	31-Mar-2020	
Detector checkout at 130-150 K complete	M. Stancari	15-Nov-2020	16-Oct-2020	
Vessels filled with LAr, ready for HV	M. Geynisman	21-Dec-2020	30-Oct-2020	
Drift HV operational	A. Schukraft	31-Jan-2021	1-Dec-2020	
PMTs operational	R. Van de Water	31-Jan-2021	20-Nov-2020	
Cryogenics commissioning complete	M. Geynisman	28-Feb-2021	15-Dec-2020	
Cosmic tracks are observed in the TPC	M. Stancari	28-Feb-2021	15-Dec-2020	
S3: SBND detector is filled with liquid argon and ready for physics commissioning (LAr purity adequate for physics has been achieved)	A. Schukraft/M. Stancari	28-Feb-2021	15-Dec-2020	

SBND Milestones to S-4a ready for physics data – CRT operational

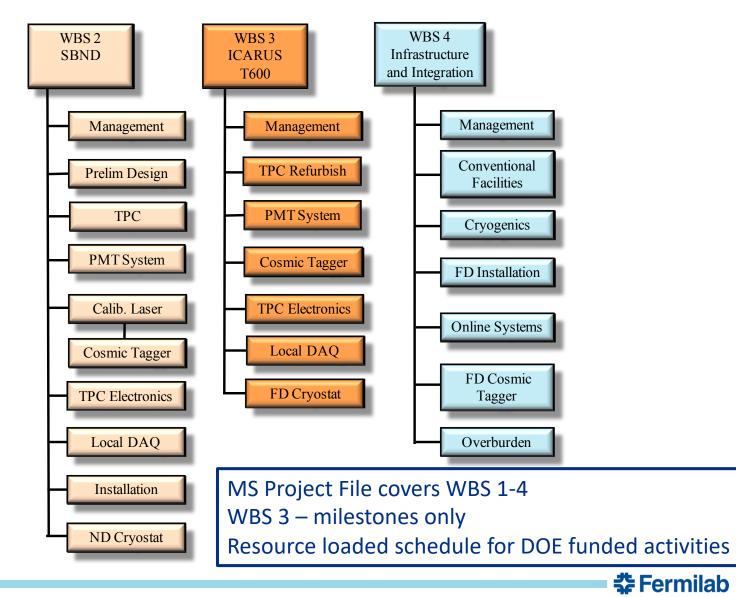
Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Top CRT panels delivered to Fermilab	I. Kreslo	1-Jul-2019	1-Apr-2019	
Slow controls operational for all detector systems	S. Gollapinni	15-Sept-2020	17-Jul-2020	
DAQ operational with >5Hz output	W. Badgett	1-Nov-2020	2-Oct-2020	
Detector system timing synchronized with beam	W. Badgett	15-Nov-2020	11-Sept-2020	
Trigger system operational	W. Badgett	15-Jan-2021	15-Dec-2020	
Top CRT panels are installed and ORC'ed	I. Kreslo	31-Mar-2021	11-Jan-2021	
S4a: SBND detectors are ready for physics data – CRT is operational	M. Stancari	31-Mar-2021	19-Jan-2021	

SBND Milestones to S-4b ready for physics data – shielding in place

Intermediate Milestone	Owner	Baseline Date	Forecast Date	Actual Date
Shielding blocks in place	C. James	21-Apr-2021	8-Feb-2021	
CRT system complete and fully commissioned	I. Kreslo	30-Apr-2021	15-Feb-2021	
S4b: SBND detectors are ready for physics data – Shielding	M. Stancari	30-Apr-2021	15-Feb-2021	

Some details of the SBN MOU

- Multi-Institution MOU is desired by the SBN participants as they wish to see the contributions of all the other SBN participants
 - To be assured that all the components will be in place to ensure successful execution of the experimental program
- Signed by Fermilab Director (who acts as the librarian) rather than at DOE level so that attention to the detail is appropriately pushed down to the lab level.
- All contributions by parties are in kind.
 - The agreements are for detector deliverables rather than financial contributions.
- All the participating institutions have signed NPUAs (working on equivalent with CERN)
- We hope this will be a simple, flexible, relatively fast process that is effective and efficient
- Blazes an important trail for future DUNE agreements


🚰 Fermilab

Host lab WBS for construction

Includes tracking of some collaboration deliverables

WBS 1

Program

Steve Brice I High Level Organization of the SBN Program

Commissioning Plans

- For both detectors, installation and commissioning activities will occur simultaneously
 - Commissioning activities have already started for ICARUS (e.g.):
 - Testing of cable continuities during chimney and flange installation by collaboration
 - Engineering note preparation and review for in-kind contributed cryogenics components
 - Commissioning milestones integrated into RLS for both detectors
- ICARUS TC and deputy TC have led the development of a draft commissioning plan incorporating detector and cryogenics activities (<u>docDB 10093</u>)
 - Technical working groups organized earlier this year are responsible parties
 - Resource request made to INFN for Italian collaboration contributions
 - Preliminary list for U.S. collaboration contributions
- SBND commissioning coordinator, Michelle Stancari, has outlined a commissioning plan
 - Close coordination with collaboration and TC and deputy TC
 - Similar structure of technical working groups as ICARUS is proposed
 - Commissioning coordinator engaged in assembly and installation planning to ensure necessary QC happens

🛠 Fermilab

Transition to Operations

- There are four major components of the SBN program for which a transition to operations must occur
 - 1. SBN Far Detector Building (docDB 1508), transition occurred in May 2017
 - 2. SBN Near Detector Building (docDB 1508), transition occurred in May 2017
 - 3. SBN Far Detector, ICARUS, transition anticipated in late CY 2019
 - 4. SBN Near Detector, SBND, transition anticipated in late CY 2020
- For the detectors, the transition to operations is defined as occurring at the milestones I-2 and S-3: "*detector is filled with liquid argon and ready for physics commissioning (LAr purity adequate for physics has been achieved*)":
 - Cryogenics systems will be in stable operations with near steady state support required
 - Collaboration 24/7 shifts will have been established for detector and data monitoring
 - Standard experiment support models from Neutrino and Scientific Computing Divisions will be in place
- For both detectors, there are about 1 year of commissioning tasks leading up to this transition to operations
 - A few more months to install Top CRT and overburden; complete physics commissioning
- Expect Fermilab to hold an Operations Readiness Review for each detector to officially complete the transition
- Transition to Operation plan in preparation for delivery to DOE in January 2019

🗲 Fermilab

Support for Commissioning and Operations

Breakouts 5, 7 & 8

- Responsibility for commissioning and operating each detector lies with the collaboration
- As host laboratory Fermilab is responsible for support
 - Cryogenics operation (w/CERN) by ND
 - Experiment Liaison Officer (ELO) provided by ND
 - consistent interface to technical resources from ND, PPD, and TD as needed
 - Interface to Accelerator Division (attend 9am meeting)
 - Support of online computing by ND Computing Professionals
 - Support of network, online computing tools, data storage, offline computing, and offline computing tools by SCD teams
 - ES&H support through ND Safety Officer, Angela Aparicio
- ND support is funded through the individual detector operation budget (i.e. MicroBooNE, ICARUS, SBND).
- SCD personnel is funded through a common pool for Intensity Frontier experiments including NOvA, g-2 and Mu2e.

🌫 Fermilab