

Algorithm development, performance, and demonstration

Nhan Tran CD-1 Director's Review March 19-21, 2019

Wilson Fellow (Fermilab)

L3 Manager: Correlator trigger Development of Particle Flow and PUPPI in L1 trigger Lead on hls4ml: high level synthesis for machine learning

Postdoc (Fermilab)

Track trigger ASIC development and testing for Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Development of PUPPI algorithm

Trigger overview and DOE scope

Algorithm development and design Functional algorithm overview Algorithm suite Physics performance

Firmware demonstration

Trigger Scope Overview

Maintain performant trigger under high luminosity conditions

Upgrade L1 trigger accept rate: 750 kHz Upgrade L1 trigger total latency: 12.5 µs

Detector/Trigger Upgrades

Tracking trigger for tracks with pT > 2 GeV

New high granularity endcap calorimeter

Full crystal readout of barrel ECal

New muon detectors for improved high η coverage and higher granularity readout

DOE trigger scope

Barrel calorimeter

Correlator trigger (combining muon, calorimeter, tracker inputs)

Deliver a suite of algorithms which cover both **robustness** and has **good physics performance**

Single system triggers*

Robust, simpler algorithms Global Calorimeter Trigger objects Track-only Trigger objects * muon system only triggers in NSF scope

Multi-system optimized reconstruction

More complex, performant algorithms Track + muon correlated trigger objects Track + muon + calorimeter correlated (particle flow and PUPPI) trigger objects

Offline reconstruction flow

tracking, local ECAL/ HCAL reconstruction

PF candidates

charged hadrons neutral hadrons photons electrons muons

ECAL and HCAL PF cluster calibrations

PF leptons and photons

photons electrons muons taus

jets and MET

pileup removal and jet energy corrections

jet tagging and ID

Functional algorithm diagram

Particle Flow Engine

Use inspiration from offline reconstruction for best performance **Particle Flow:**

efficient combination of complementary detector subsystems

Detector	p _T -resolution	η/Φ-segmentation	
Tracker	0.6% (0.2 GeV) – 5% (500 GeV)	0.002 x 0.003 (first pixel layer)	
ECAL	1% (20 GeV) – <mark>0.4%</mark> (500 GeV)	0.017 x 0.017 (barrel)	
HCAL	30% (30 GeV) – <mark>5%</mark> (500 GeV)	0.087 x 0.087 (barrel)	

Large gains from PF on jet and MET resolutions

arXiv:1706.04965 [PF paper]

Use inspiration from offline reconstruction for best performance PUPPI (PileUp Per Particle Id): based on PF paradigm

Framework determines per particle weight for how likely a particle is from PU key insight: uses track vertexing and local radiation shape to infer neutral pileup contribution with QCD ansatz

Use inspiration from offline reconstruction for best performance PUPPI (PileUp Per Particle Id): based on PF paradigm

Framework determines per particle weight for **how likely** a particle is from PU **key insight**: uses **track vertexing and local radiation shape** to infer neutral pileup contribution with QCD ansatz

Large reduction in particle content (bandwidth) for trigger calculations

Work in progress — full trigger menu

• Muons:

- Track-matched muon
 - Stand-alone matched to L1 Tracks
 - BMTF: default matching, OMTF default matching, EMTF optimized matching

• Electrons/Photons:

- Stand-alone electron/photon from:
 - barrel clusters with dedicated WP for photons/electrons
 - HGCAL clusters with dedicated EG ID
- Track-matched-electron: stand-alone electron matched to L1 Track
- Track-matched-iso electron: track-matched electron with Tracks Isolation
- Track-iso photon: stand-alone photon with Track Isolation

• Jets/HT/MET:

- **PF+Puppi Jets/HT/MET**: from clustering of PF+Puppi candidates
 - HT computed with jets with $p_T{>}30$ GeV and $|\eta|{<}2.4$
- Taus:
 - **PF+Puppi Taus**: Phase2 HPS Tau algo on L1 PF+Puppi candidates
 - **PF+Puppi Iso Taus**: isolation defined with sum of PF+Puppi charged candidates

Level-1 Trigger Menu

	Rates (kl	Hz) Thresholds	Additional
		('offline', GeV)	requirements
L1_SingleTkMu (single muon)	18.7	22	η <2.4
L1_DoubleTkMu (double muon)	1.5	15,7	η <2.4, dZ<1cm
L1_TripleTkMu (triple muon)	11.9	5,3,3	η <2.4, dZ<1cm
L1_SingleTkEle (single electron)	95.8	36	η <2.4
L1_SingleTkEleIso (single electron iso)	90.5	28	η <2.4
L1_SingleTkEMIso (single photon iso)	66.4	36 (NA Now)	η <2.4
L1_TkEleIso_EG (single ele iso + EG)	59.8	22,12	η <2.4
L1_DoubleTkEle (double ele)	67.0	25,12	η <2.4, dZ<1cm
L1_DoubleTkEMIso (double photon iso)	23.1	22, 12 (NA Now)	η <2.4
L1_SinglePFTau (single tau)	7.9	120	η <2.1
L1_PFTau_PFTau (double tau)	4.0	70,70	η <2.1
L1_PFIsoTau_PFIsoTau (double tau iso)	11.8	44, 44 (33,33 Now)	η <2.1
L1_SinglePfJet (single jet)	54.4	180 (200 Now)	η <2.4
L1_DoublePFJet_dEtaMax (double jet dEta)	62.8	125,125 (112,112 Now)	η <2.4, dη<1.6
L1_PFHT (ht)	19.7	360	
L1_PFMet (met)	71.7	150	

Level-1 Trigger Menu

]	Rates (kl	Hz) Thresholds ('offline', GeV)	Additional requirements
L1_TkMu_TkEGIso (mu,eleIso)	3.3	7,20	η <2.4, dZ<1cm
L1_TkMu_TkEG (mu,ele)	9.1	7,23	η <2.4, dZ<1cm
L1_TkEG_TkMu (ele,mu)	4.2	10,20	η <2.4, dZ<1cm
L1_TkMu_DoubleTkEle (mu,ele,ele)	2.7	6,17,17	η <2.4, dZ<1cm
L1_DoubleTkMu_TkEle (mu,mu,ele)	9.4	5,9,9	η <2.4, dZ<1cm
L1_TkMu_PfHTT (mu,HT)	6,7	6,240	η <2.4, dZ<1cm
L1_TkMu_PFJet_dRMax_DoubleJet_dEtaMax	18.7	12,40,40	η <2.4, dR<0.1,
(mu, jet, jet)			dη<1.6, dZ<1cm
L1_TkMu_PfJet_PfMet (mu,jet,met)	37.4	3, <mark>120</mark> (100 Now),60	η <2.1/2.4, dZ<1cm
L1_DoubleTkMu_PfJet_PfMet (mu,mu,jet,met)	22.7	3,3,60,70	η <2.4, dZ<1cm
L1_DoubleTkMu_PfHT (mu, mu, ht)	3.3	3,3,220	η <2.4, dZ<1cm
L1_DoubleTkEle_PfHT (mu, ele, ht)	21	8,8,300	η <2.4, dZ<1cm
L1_TkEleIso_PfHT (eleIso, HT)	21.9	26,100	η <2.4, dZ<1cm
L1_TkEle_PFJet_dRMin (ele, jet)	103.1	28, <mark>60</mark> (34 Now)	η <2.1/2.4, dR>0.3, dZ
L1_PFIsoTau_TkMu (tauIso, mu)	8.9	24,18	η <2.1/2.4, dZ<1cm
L1_TkEleIso_PFIsoTau_dRMin (eleIso, tauIso)	41.7	22, 26	η <2.1/2.4, dR>0.3, dZ
L1_PFIsoTau_PFMet (tauIso, met)	14.5	50,(40 Now) 120	η <2.1
L1_PFHTT_QuadJet (ht, quadjet)	21.2	320, 70,55,40,40	η <2.4
TOTAL RATE	477	(target: 750 kHz	:)

ALGORITHM DEVELOPMENT

Goals of this talk:

Present algorithm status, physics performance, and firmware readiness towards trigger baseline design in DOE scope

FPGA development of algorithms in languages like VHDL or Verilog (RTL) have long development cycles and require a lot of engineering support

New tools: HLS, high level synthesis

C-level programming with specialized preprocessor directives which synthesizes optimized firmware

Particle flow example:

Algorithmic firmware developed in 2-3 months using HLS, only physicists

Engineering firmware support still required (of course!) — our experience: system interfaces, infrastructure, and signal routing, etc.

Functional algorithm diagram

Functional algorithm diagram

Calorimeter clustering

Regional Calorimeter Trigger (RCT) – clusters and towers Top 12 3x5 EG clusters per region (and shower shape info) + unclustered energy saved in tower information Clustering procedure implemented using HLS Moderate resource usage (8% FFs, 13% LUTs, 72 clock latency)

Calorimeter clustering

- Room for: Tower computations (depth), cluster ID, and calibration
- resources

Cluster ID with NN in development

Output of the BCT GCT/Input Correlator						
BCT GCT	Cluster	40	288	11,520	461	
BCT GCT	Tower	16	2,448	39,168	1,567	

Full cluster calibration chain similar for endcap and barrel calorimeter Calibrations currently set up as a look up table:

pT, eta, EM fraction

Functional algorithm diagram

Particle flow regions

Vertexing can be done in parallel to particle flow but is needed for pileup mitigation techniques

First "fast histogramming" algorithms implemented as a baseline, improvements and alternative approaches under study

Resources are reasonable (several %)

Considering to send multiple vertices for best coverage Important for softer processes

Forward region, look at all neighboring particles

Upshot: two "flavors" of PUPPI on whether you have tracking information "Forward PUPPI" requires more resources

For typical region with 25 tracks and 25 EM/had clusters each Further optimizations of the algorithm improve resource usage Also consider computing PUPPI for multiple vertices to increase reconstruction efficiency

	5,			
arrel PF + PU	# Vtx	1	3	5
P.a. 812	Latency (cycles)	124	125	126
	LUTs as Logic (%)	41.22	50.73	59.72
	Registers (%)	22.74	25.79	29.68
	DSPs (%)	38.67	39.43	40.37

For typical region with 25 tracks and 25 EM/had clusters each Further optimizations of the algorithm improve resource usage Also consider computing PUPPI for multiple vertices to increase reconstruction efficiency

> Forward PF + PUPPI algorithm

On-Chip	Power (W)	Used	Available	Utilization (%)	For 30 EmCalo and
Clocks	2.151	4			30 Calo inputs
CLB Logic	3.072	986103			
LUT as Logic	2.562	424340	1182240	35.89	
LUT as Shift Register	0.260	41071	591840	6.94	
Register	0.127	337005	2364480	14.25	
CARRY8	0.122	15846	147780	10.72	
BUFG	<0.001	16	240	6.67	
Others	0.000	12570			Major reduction
F7/F8 Muxes	0.000	77176	1182240	6.53	in LUTe/EE
Signals	6.291	655626			
Block RAM	0.004	7	2160	0.32	
MMCM	0.098	0			
DSPs	3.393	3130	6840	45.76	
I/0	0.804	401	702	57.12	
Static Power	2.737				
Total	18.549				

Jet and HT performance

objects

Continual improvements to algorithms

Jet algorithms still offline style, work in progress

Tuning of the PF+Puppi algorithm for MET performance Comparison against other types of MET Significant gains in MET rates/efficiency for the full PF+PUPPI MET

Functional algorithm diagram

Variants of muon al much as possible Track + muon stubs pileup — optimal cu

for P_{ϕ_b} similar to selection cuts made on track angle 4.

ice rates.

Robust trigger builds jets only from calorimeter information Algorithm is based off of current trigger algorithm

Reduced size jets due to increase pileup (7x7 towers $\sim R = 0.3$ jets)

Resource usage well understood from current implementation

Robust trigger builds jets only from calorimeter information Algorithm is based off of current trigger algorithm

Reduced size jets due to increase pileup (7x7 towers $\sim R = 0.3$ jets)

Performance under control

Performance studies show good performance; quad jet triggers 95% efficient at 75 GeV

Instance	LUTs	FFs	BRAM
i_jet_finding	136,024	118,492	789
available on VU9P	1,182,240	2,364,480	4320
% used	11.5	5.0	18.3

First firmware implementation fits with vertexing on the trackonly board

Ultimately, need demonstration of algorithm, firmware, and hardware

Developing a phased approach to work on each piece in a modular way

Hardware development in progress, see next talk!

Develop algorithms as a firmware blocks

Develop firmware infrastructure using similar legacy hardware

Evolve hardware step-by-step

Generation 0 Legacy µTCA boards with Virtex-7 FPGA (CTP7) Multi-board algorithm demonstration

Generation 1

CTP7 boards with improved link protocol (64/66b)

Generation 2 Mixed CTP7 + APx (new ATCA with Virtex Ultrascale+)

Generation 3 All APx setup

A first demonstration

Demonstration

Demonstration

Particle flow demonstration

First demonstration is the PF + PUPPI algorithm in the Generation0 setup

Reduced input PF block (10 Tracks, 10 EG, 10 Had objects)

Run the demo in both 1-board and 3-board configuration

Perfect agreement in expected outputs, HLS outputs, and HW results

+		+	+	+
On-Chip	Power (W)	Used	Available	Utilization (%)
+	+	+	+	+
Clocks	1.222	32		
Slice Logic	0.676	383392		
LUT as Logic	0.552	126710	433200	29.25
Register	0.059	196816	866400	22.72
CARRY4	0.035	10587	108300	9.78
LUT as Shift Register	0.017	8260	174200	4.74
LUT as Distributed RAM	0.011	1264	174200	0.73
F7/F8 Muxes	0.001	2753	433200	0.64
Others	0.000	11181		
Signals	1.420	324242		
Block RAM	1.165	294.5	1470	20.03
MMCM	0.342	3	20	15.00
DSPs	0.417	I 346	I 3600	I 9.61
I I/O	0.583	I 49	I 600	I 8.17
GTH	5.696	64		
XADC	<0.001	1		
Static Power	0.661			
Total	12.182			
+		+	+	

Can test bigger blocks too

**Muon algo demonstration also performed using legacy hardware

Summary of algorithm status

	baseline algo	firmware
Clustering		
ID		
Calibration		
Track prop		
PF block		
Vertexing		
PUPPI		
trk+mu trk		
trk+mu stub		
displaced		
calo jet		
trk jet		
τ's		
calo e/γ		

Suite of algorithms to meet physics needs (menu) demonstrated

Firmware for most resource intensive algorithms within system requirements to meet mission need

Contributing institutions

- Clustering and ID: UW
- Calibration: MIT, Fermilab, UIC
- Track propagation: TAMU
- Muon-track correlation: UCLA, UF, TAMU, Fermilab
- Vertexing and track-based objects: CU Boulder, Rutgers
- Particle Flow and PUPPI: MIT, Fermilab, UIC
- Calo-based objects: UW

Algorithm performance and firmware have progressed since 2018 CD1

Algorithms for: barrel calorimeter trigger, global calorimeter trigger, correlator (including vertexing, track-based objects)

Full demonstration system for algorithm firmware progressing

First demonstration performed

In sync with iCMS milestones for TDR in 2019

