

In-depth: ETL Assembly WBS 402.8.4.3

Frank Golf HL-LHC CMS Upgrade CD-1 Director's Review 20 March 2019

- Frank Golf, Assistant Professor at the University of Nebraska-Lincoln.
- Serving as L4 for ETL module assembly in US-MTD.
- Relevant CMS experience:
 - Construction and operation of DAQ for ME-1/1 CSC subdetector, CSC upgrade test stand coordinator, co-convener of CSC timing task force.
 - Previously served as co-convener of CMS sub-group: searches for supersymmetry, trigger and Monte Carlo for Run 2.
 - Co-coordinator responsible for analysis data sets and SW tools.
 - Physics interests: searches for new phenomena, top quark physics, higgs physics.

- Scope and Deliverables of ETL Assembly (WBS 402.8.4.3)
- Conceptual Design
- Cost and Schedule
- Contributing Institutions
- Resource Optimization
- ES&H
- QA/QC
- Summary

Scope:

- Development of the ETL module design.
- Development of the module assembly procedure.
- Development of the testing and QA/QC procedures for module sub-components and completed modules.
- Assembly of modules for the Endcap Timing Layer for CMS.
- Deliverables: The U.S. will deliver to CMS a number of modules sufficient to cover both faces of one disk of each endcap of the ETL detector, i.e. 50% of the total number of modules required for the full 2 disks per endcap design as described in the TDR.
 - U.S. share: 5206 modules = 4408 modules + 798 spares.

Conceptual Design

ETL module design: two-sensor and one-sensor modules.

- Mechanical structure protects the LGAD sensor and ETL ASIC and facilitates handling and shipping of modules.
- Module designed for simple assembly, testing, and installation and to allow for easy replacement of modules.

Charge #1,2

^{***}Module design modified after BoE frozen. Change organization of sensors into modules ($6 \rightarrow 2$ sensors/module), total number of sensors the same. Change is cost and effort neutral.

Frank Golf HL-LHC CMS Upgrade CD-1 Director's Review

- Mechanical mockups of all module components have been constructed and work is now starting to investigate mechanical aspects of module assembly and installation.
- Assembly sites have demonstrated basic wire bonding capabilities, e.g. using simple PCB and glass with Al pads.

Mechanical mockups of module components as a two-sensor module.

Demonstration of wire bonding at UNL – Fall 2018.

Charge #1,2

Charge #2, 4

- Construct mechanical mockups of modules (2019-2020).
 - Develop and demonstrate all stages, except electrical testing, of the module assembly procedure.
 - Verify module mechanical and thermal properties investigate potential mechanical issues with module installation.

Construct electrically functional modules (2020-2022).

- Develop and demonstrate module testing procedures, building on system testing experience described in talk by A. Apresyan.
- Verify the full end-to-end module assembly procedure.
 - Demonstrate component handling procedures.
 - Demonstrate ability to reliably make required electrical connections.
- Radiation test assembled modules.
- Build up team and train people through these activities.

Schedule and Cost

- Schedule and major milestones are in P6 (CMS-doc-13321):
 - ETL assembly R&D: now Oct 2019
 - ETL assembly prototyping: Oct 2019 July 2022
 - ETL assembly pre-production: July 2022 Nov 2022
 - ETL assembly production: Nov 2022 Nov 2023
- Consistent with (or earlier than) international schedule and milestones.
- Schedule driven by component availability: bump-bonded LGAD+ETL ASIC sub-assemblies, flex circuits, AIN pieces.
 - Assembly workflow designed for higher throughput, if needed.

Cost Estimate – ETL assembly process

Charge #3

WBS	Direct M&S (\$)	Labor (Hours)	FTE	Direct + Indirect + Esc. (\$)	Estimate Uncertainty (\$)	Total Cost(\$)
CD1-v2-DR-402.8 402.8 TL - Timing Layer	6,561,457	161764	91.50	11,364,763	3,026,706	14,391,469
CD1-v2-DR-402.8.2 TL - Management	433,000	26520	15.00	568,714	144,562	713,276
CD1-v2-DR-402.8.3 BTL - Barrel Timing Layer	3,352,236	49800	28.17	5,410,860	1,318,476	6,729,336
CD1-v2-DR-402.8.4 ETL - Endcap Timing Layer	2,776,221	85444	48.33	5,385,188	1,563,669	6,948,857
CD1-v2-DR-402.8.4.1 ETL - LGAD Sensors	0	3872	2.19	0	0	0
CD1-v2-DR-402.8.4.1.1 ETL - LGAD Sensors - R&D and Prototypes	0	2400	1.36	0	0	0
CD1-v2-DR-402.8.4.1.2 ETL - LGAD Sensors - Pre-Production and Production	0	1472	0.83	0	0	0
CD1-v2-DR-402.8.4.2 ETL - Frontend ASICs	1,922,500	22588	12.78	3,874,081	1,039,579	4,913,660
CD1-v2-DR-402.8.4.2.3 ETL - Frontend ASICs v2 development	256,000	14634	8.28	1,474,236	556,360	2,030,596
CD1-v2-DR-402.8.4.2.4 ETL - Frontend ASICs v3 development	1,666,500	7954	4.50	2,399,845	483,219	2,883,064
CD1-v2-DR-402.8.4.3 ETL - Assembly	680,860	30088	17.02	1,145,013	397,283	1,542,296
CD1-v2-DR-402.8.4.3.1 ETL - Assembly R&D and Prototypes	268,660	19164	10.84	488,722	152,824	641,546
CD1-v2-DR-402.8.4.3.2 ETL - Module Assembly Pre-production	62,000	626	0.35	91,721	25,958	11 7, 679
CD1-v2-DR-402.8.4.3.3 ETL - Module Assembly Production	350,200	10298	5.82	564,569	218,501	783,070
CD1-v2-DR-402.8.4.4 ETL - System Testing	79,561	6322	3.58	103,418	38,340	141,759
CD1-v2-DR-402.8.4.4.1 ETL - System Testing - Prototyping	60,448	1898	1.07	79,459	30,061	109,520
CD1-v2-DR-402.8.4.4.2 ETL - System Testing - Preproduction	9,584	1878	1.06	12,004	4,154	16,158
CD1-v2-DR-402.8.4.4.3 ETL - System Testing - Production	9,529	2546	1.44	11,955	4,125	16,080
CD1-v2-DR-402.8.4.5 ETL - Integration and Commissioning	93,300	22574	12.77	262,676	88,467	351,143
CD1-v2-DR-402.8.4.5.1 ETL - I&C - Assembly Setup	0	1768	1.00	0	0	0
CD1-v2-DR-402.8.4.5.2 ETL - I &C - Assembly	93,300	14434	8.16	164,318	39,288	203,606
CD1-v2-DR-402.8.4.5.3 ETL - I &C - Cold Testing	0	1888	1.07	20,355	10,178	30,533
CD1-v2-DR-402.8.4.5.4 ETL - I&C - Mount ETL on EC	0	948	0.54	78,003	39,001	117,004
CD1-v2-DR-402.8.4.5.5 ETL - I&C - Commissioning	0	3536	2.00	0	0	0

M&S driver is the cost to procure flex connectors from vendor.

Labor driver is the cost of technicians for wire bonding.

Biggest risk: ETL module assembly facility is unavailable.

- e.g. gantry or wire bonder needs servicing, clean room flooding, etc.
- Potential problems mitigated by having more than one assembly site.
- Smaller risks from availability of components partially mitigated by operating with higher throughput.

Risk Rank	RI-ID	Title	Probability	Schedule Impact	Cost Impact	P * Impact (k\$)				
WBS / Ops Lab Activity : 402.8 TL - Timing Layer (general risks) (3)										
WBS / Ops Lab Activity : 402.8.3 BTL - Barrel Timing Layer (15)										
B WBS / Ops Lab Activity : 402.8.4 ETL - Endcap Timing Layer (12)										
🖃 Risk Typ	e : Opportunity (1)									
2 (Medium)	RO-402-8-01-D	ETL - Use AltiROC	10 %	-8 months	-760 k\$	-76				
🗏 Risk Typ	e : Threat (11)									
3 (High)	RT-402-8-01-D	ETL - Additional FE ASIC prototype cycle is required	50 %	4 5 6 months	500 600 700 k\$	300				
2 (Medium)	RT-402-8-03-D	ETL - FE ASIC does not meet specs - needs another pre-prod run	10 %	6 7.5 9 months	914 970 1026 k\$	97				
2 (Medium)	RT-402-8-02-D	ETL - Problems with ETL module assembly facility	50 %	1 months	30 k\$	15				
2 (Medium)	RT-402-8-10-D	ETL - Sensor quality problem during production	15 %	2 3 6 months	28 52 109 k\$	9				
1 (Low)	RT-402-8-53-D	ETL - Integration facility at CERN runs out of components	25 %	3 months	21 k\$	5				
1 (Low)	RT-402-8-48-D	ETL - Delay in delivery of parts from iCMS	20 %	1 months	10 20 30 k\$	4				
1 (Low)	RT-402-8-31-D	ETL - Storage-related degradation of LGADs	10 %	3 months	18 k\$	2				
1 (Low)	RT-402-8-52-D	ETL - Module Radiation Tolerance	10 %	1 months	15 k\$	2				
1 (Low)	RT-402-8-49-D	ETL - Delays or damage in transport of ETL modules to CERN	5 %	1 months	10 k\$	1				
1 (Low)	RT-402-8-50-D	ETL - Module assembly yield is low	10 %	0 0 1 months	0 5 15 k\$	1				
1 (Low)	RT-402-8-51-D	ETL - Problem with AIN vendor	5 %	1 2 3 months	0 15 30 k\$	1				

Contributing Institutions and Resource Optimization

- UNL and FNAL will serve as assembly sites. UCSB will provide additional labor.
 - UNL and UCSB have extensive experience assembling pixel and strip tracker modules and with detector electronics.
 - FNAL has extensive experience in many detector systems.
- Wire bonding performed by technicians. Other stages of assembly and testing will be performed by a team of undergraduate and graduate students and postdocs.

 Assembly at UNL will use existing clean room, plan to use Lab G space at FNAL.

Both sites could expand clean room space, if needed.

- ETL module assembly is well advanced:
 - Module design and assembly procedure well defined.
 - R&D is ongoing to demonstrate and optimize:
 - preliminary module design,
 - module assembly procedure,
 - and testing and QA/QC procedures.
- Strong team of contributing institutions with significant prior experience building and testing detectors and managing HEP projects.
- Cost and schedule are defined and entered in P6.
- Planning and R&D are advancing for the US to meet its commitment to deliver 50% of required ETL modules.

Extra Material

- A hazard analysis has been performed for this activity and the hazards are listed in the preliminary Hazard Awareness Report (<u>cms-doc-13394</u>). This activity poses no unique hazards not typically encountered in HL LHC upgrade activities.
- Safety is achieved following standard practices appropriate for the lab and institute:
 - Complying with local safety standards.
 - Site Safety officers at Institutes identified in the SOW.
- R&D and some testing will use radiation sources.
 - Tests performed at commonly used radiation and test beam facilities.

- Participating institutions have a strong track record building, testing, and commissioning detectors.
 - And have personnel with technical expertise (e.g. engineering, technicians) with the required technologies necessary to execute this project.
- Plan makes maximal use of industrial processes and techniques for module assembly.
 - Automation of major stages of module assembly achieved through the use of technologies such as a robotic gantry and a programmable wire bonder.
 - Assembly will use existing technologies previously acquired for other projects.

- Recently modified the module design to be based on 2 sensors. It was previously based on 6 sensors.
 - Detailed drawings from engineering favor smaller modules.
 - Even simpler assembly and testing, higher yield.
 - Impact of is minimal:
 - No change in number of sensors, just re-organize their grouping.
 - Change is cost neutral.