‡ Fermilab

Fermi National Accelerator Laboratory P.O. Box 500 - Batavia, Illinois - 60510

Functional Requirement Specification PXIE FAST FARADAY CUP, FRS ED0004200, Rev. -

Prepared by:	FNAL	Extension	Date
V. Scarpine,	PXIE Instrumentation leader	x2571	3 AUG 2015
Approved by:	FNAL/AD/MEBT Manager	Extension	Date
A. Shemyakin		x4440	14 DEC 2015
Approved by:	FNAL/AD/Instrumentation Department Head	Extension	Date
N. Eddy*		x6860	10 DEC 2015
Approved by:	FNAL/AD/Controls Department Head	Extension	Date
J. Patrick		x2626	14 DEC 2015
Approved by:	FNAL/AD/PXIE Front End Lead Mechanical	Extension	Date
C. Baffes	Engineer	x4154	14 DEC 2015

Revision control is managed via Fermilab Teamcenter Workflows. *Non-Teamcenter Users' signatures managed via e-mail.

Rev.	Date	Description	Originated By	Section No.	Approved By
0	03 AUG 2015	Initial DRAFT	Vic Scarpine	ALL	
-	14 DEC 2015	Initial release	Vic Scarpine	ALL	As signed
А					
В					

Introduction and Scope

The specification describes requirements for PXIE Fast Faraday Cup (FFC) intended for measuring the RMS length of bunches in the MEBT. The FFC is an insertion device that consists of a plate with a small hole and a collector of the beamlet cut by the hole. The collector is made as a strip line to provide a large bandwidth.

The FFC is used in the mode of short, infrequent pulses to avoid overheating of the collector and allow analyzing the FFC signal recorded with an oscilloscope. The measurements are done in low-radiation environment so that the oscilloscope can be placed within 3 m from the FFC.

Relevant Beam Parameters

For the purpose of the FFC measurements, the beam is assumed coming in trains (pulses) of 162.5 MHz bunches with parameters indicated in Table 1.

In the Table 1, The FFC is assumed to be moved vertically. Capability of mounting the FFC at other angles is desirable but not required.

Parameter	Unit	Nominal	Range
		value	
Particles type		H⁻	
Energy	MeV	2.1	2.0 – 2.2
Velocity	mm/ns	20.01	
Bunch frequency	MHz	162.5	
Bunch length, rms	degrees of	10	7 -35
	162.5MHz		
Bunch length, rms	ns	0.17	0.12 –
			0.60
Nominal pulse repetition rate	Hz	Single Pulse	From
			single
			pulse to
			0.1 Hz
Nominal pulse length	μs	20	1 - 20
Current averaged over 1 µs	mA	5	1 - 10
Corresponding particles per bunch	10 ⁸	1.9	0.38 - 3.8
rms beam radius	mm	2	1 - 4
Vertical angle of beamlet centroid	mrad	0	0 - 10
Horizontal angle of beamlet centroid	mrad	0	0 - 2
Beamlet angular spread, rms	mrad	1.5	0.5 - 3

Table 1. Relevant beam parameters

FFC Functional Requirements

For the nominal beam parameters listed in Table 1, the FFC should provide an RMS bunch length measurement with accuracy \leq 5% averaged over 1 μ s of beam. The option to observe the length of

individual bunches should be foreseen as well. The time per measurement should be not more than 20 sec.

The beamlet diameter should be $\leq 1 \text{ mm}$.

Interfaces

Table 2. Mechanical interfaces for the FFC monitor

Parameter	Unit	Value
Longitudinal space, flange-to-flange	mm	≤ 200
Clear aperture of vacuum chamber	mm	≥ 30
Matching flanges		CF 2 3/4
Vertical range of measurement positions with respect to	mm	± 15
the beam line axis		
Absolute accuracy of vertical position of the sensor	mm	≤1
Reproducibility of vertical position	mm	≤ 0.2
Resolution of vertical position	mm	≤ 0.1
Sensor horizontal alignment with respect to beam line axis	mm	≤1
FFC module pitch and yaw adjustment range	mR	± 25
FFC module pitch and yaw adjustment resolution	mR	0.25

The design should allow using the monitor in UHV environment. Vacuum chamber and stand must allow for FFC sensor pitch and yaw adjustment under vacuum.

Recommended Technical Parameters

Table 3. Recommended technical parameters of the FFC, including electronics

Parameter	Unit	Value
FFC sensor bandwidth	GHz	≥7
FFC overall system bandwidth	GHz	≥5
Amplitude dynamic range	bit	≥6

References

- 1. PXIE Functional Requirements Specification, TC # ED0001223, uncontrolled copy is available at http://projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=980
- 2. MEBT Functional Requirements Specification, TC# ED0001303, uncontrolled copy is available at http://projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=938