Laser-Wakefield Acceleration Application to Endoscopic Oncology

Scott Nicks, Toshi Tajima, Dante Roa, Ales Necas

Workshop on Beam Acceleration in Crystals and Nanostructures

June 25, 2019

Laser Wakefield Acceleration (LWFA)

- Collective force $(\sim N^2)$
- Coherent, smooth, robust (not stochastic)
- Driven by laser or beams
- High acceleration gradient: ~ GeV/cm
- Wake phase velocity $(v_{ph}) \gg$ bulk velocity (v_{bulk})

$v_{ph} \gg v_{bulk}$

- Coherent, robust
- No turbulence
- Deep-ocean tsunami

$v_{ph} \sim v_{bulk}$

- Wavebreak
- Turbulence
- Near-shore tsunami

T. Tajima and J. M. Dawson, Phys. Rev. Lett. **43**, 267 (1979) E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. **81**, 1229 (2009)

Laser Wakefield Theory

$$E_{TD} = \frac{m\omega v_{ph}}{e}$$

¹B. M. Hegelich et al., Nature **439**, 441-444 (2006)

Endoscopic Oncology

- Bring radiation directly to tissue ٠
- Endoscopic or intra-operative ٠
- No collateral tissue damage ٠
- Low-energy particles ٠
- LWFA \rightarrow LINAC alternative ٠

Professor Dante Roa, Radiation Oncology, UCI

A. Giulietti, ed., Laser-Driven Particle Acceleration Towards Radiobiology and Medicine, 2016 A. S. Beddar et al. Med. Phys. 33, 1476 (2006)

[©] MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED

Fiber lasers for LWFA

- Coherent Amplification Network (CAN)
- Optical lasers
- Many lasers together
- Technology reached critical stage
- Fiber laser for endoscopic LWFA

Nanomaterials for LWFA

5<u>× 10⁻⁵</u>

х (m)

Ez (V/m)

5<mark>x 10⁻⁵</mark>

x 10¹³

0.5

0

-0.5

۲ (m)

Ex (V/m)

8.2 X (m)

8

 $\times 10^{-4}$

N. V. Myung, J. Lim, J-P Fleurial, M. Yun, W. West, and D. Choi, Nanotech. 15, 833 (2004) X. Zhang et al., Phys. Rev. Accel. Beams 19, 101004 (2016) T. Tajima, Eur. Phys. J. Spec. Top. 223, 1037 (2014)

7

8.4

x 10⁻⁴

0.5

LWFA for Endoscopic Oncology

- Putting the pieces together
- \rightarrow low-energy electrons
- \rightarrow near-critical density LWFA
- \rightarrow Nanomaterial provides density/guide
- \rightarrow CAN laser (optical) for endoscopy

Paper and Collaborators

Electron Dynamics in the High-Density Laser-Wakefield Acceleration Regime

B.S. Nicks,¹ S. Hakimi,¹ E. Barraza-Valdez,¹ K.D. Chestnut,¹ G.H. DeGrandchamp,¹ K.R. Gage,¹ D. B. Housley,² G. Huxtable,¹ G. Lawler,³ D.J. Lin,¹ P. Manwani,³ E.C. Nelson,¹ G.M. Player,¹ M.W.L. Seggebruch,¹ J. Sweeney,¹ J.E. Tanner,¹ K. Thompson,² and T. Tajima¹

¹University of California, Irvine ²University of California, San Diego ³University of California, Los Angeles (Dated: June 4, 2019)

The electron dynamics of laser wakefield acceleration is examined in the high-density regime, including the dependence on the plasma density and the amplitude and pulse length of the laser. In the very high (near-critical) density regime, electrons are accelerated by the ponderomotive force followed by the electron sheath formation, resulting in a flow of bulk electrons. Applications of these properties to medical conditions are considered.

Submitted, Phys. Rev. Accel. Beams (2019)

- Next steps
- → Wakefield physics at $n_e/n_c \approx 1$
- \rightarrow Scaling: density, intensity
- \rightarrow Self-modulation

Modeling Critical-Density Wakefields

- Critical density $\rightarrow v_g = 0$
- Laser enters plasma \rightarrow sheath formation
- Sheath accelerates electrons
- Simulation \rightarrow laser injected from vacuum

- 1D 3V Particle-in-cell (PIC) code
- Ti:Sapphire laser, $\lambda = 1 \ \mu m$

• Laser
$$E_y = E_0 \sin(kx - \omega t - \phi) h(x, t)$$

• $h(x,t) \rightarrow$ flat-top, resonant profile

Density Scaling of Electron Energy

- Electron energy gain: $\Delta \mathcal{E} = 2m_e c^2 (n_c/n_e)$
- Linear dependence on n_c/n_e
- Scan over $n_c/n_e \rightarrow \text{linear } \Delta \mathcal{E}$ trend agrees
- Low density → wakefield not constant → deviation from linearity

Low-Density Regime

- Typical wakefield regime, $n_c/n_e = 10$
- Clear, robust wakefield
- Wakefield \rightarrow train of trapped electrons
- "Blue" wave \rightarrow no bulk coupling/turbulence

High-Density Regime

- Critical density regime, $n_c/n_e = 1$
- $v_g = 0 \rightarrow$ sheath oscillation
- Sheath \rightarrow low-energy electron streams

- Streams build up \rightarrow sheath exhausted
- Novel regime
- "Black" wave \rightarrow bulk coupling

Transition Regime

- Intermediate regime, $n_c/n_e = 5$
- Modest electron trapping
- Transition \rightarrow sheath physics beginning
- "Grey" wave

Intensity Scaling of Electron Energy

- Electron energy gain in high-density regime
- $a_0 \rightarrow$ Normalized laser intensity
- Energy gain a_0 dependence: $\Delta \mathcal{E} \propto g(a_0)$

- Ponderomotive potential $g(a_0) = (1 + a_0^2)^{1/2} 1$
- Density fixed, $\Delta \mathcal{E}$ scanned over a_0
- $\Delta \mathcal{E}$ compared $\rightarrow g(a_0)$

Self-Modulation

- Fiber lasers → long pulse better
- Self-modulation: long pulse breaks → small pulses
- Pulse length λ_l / λ_p scanned, $n_c / n_e = 10$, $a_0 = 1$
 - Long pulses → Laser/wakefield modulated

J. Krall, A. Ting, E. Esarey, and P. Sprangle, in *Proceedings of the 1993 Particle Accelerator Conference*, Vol. 4 E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. **81**, 1229 (2009)

Self-Modulation at the Critical Density

Long pulse 3 Critical plasma + long laser pulse $(\lambda_l = 8\lambda_p)$ ٠ E_y/E_{TD} $v_q = 0 \rightarrow$ huge sheath oscillation • Sheath Later streams Violent sheath \rightarrow huge electron acceleration ٠ from sheath Laser \rightarrow initial burst ٠ p_x/ma Sheath \rightarrow later streams ٠ Resonant pulse Initial burst 1.5 rom laser E_y/E_{TD} p_x/mc $E_{\rm X}/E_{\rm TD}$ 32 64 U x/λ_p 0.0 8 16 n 16 x/λ_p

Electron Tissue Penetration

- Critical plasma + long laser pulse $(\lambda_l = 8\lambda_p)$
- Electron energy spectrum \rightarrow tissue penetration
- Continuous slowing-down approximation (CSDA)

32

 x/λ_p

 $E_{\rm X}/E_{\rm TD}$

64

• Penetration \rightarrow tuned by n_c/n_e , a_0

 E_y/E_{TD}

3

p_x/mc

0

0

Summary

- Laser evolution \rightarrow CPA to fiber
- Endoscopic therapy \rightarrow keV electrons
- Fiber \rightarrow tiny keV accelerator
- Technology exists \rightarrow quick deployment
- Low-hanging fruit for large medical benefit
- Critical-density wakefield \rightarrow Novel physics regime

