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Outline

Bulk plasma acceleration
• plasma blowout regime - severe limitations although been very successfully demonstrated
• e--beam acc. à coupled longitudinal & transverse wakes & plasma-ion problems
• e+-beam acc. à overcome ion-defocusing / phase-mix e-

• Hollow-channel à channel-wall current / fringe-fields

Crystal hollow nanotube modes
• Surface plasmon polariton (short time-scales), surface phonon polariton mode (longer time-scales)
• SW-CNT, MW-CNT modes
• Beam-driven modes in the hollow region – plasmon-polariton vs phonon-polariton modes
• 3D PIC results of driver independence à occurs for e+ / e- drive beams

Ongoing Work
• Acceleration / Focusing field à decoupled – no ions
• Driver affect à head-erosion / etching – diff from bulk Plasma
• Beam-loading à positron / electron beam in “crunch-in” wakefields



Bulk plasma Blowout regime 
– fundamental limitations

§ Degradation of accelerated beam qualities 
its emittance, energy spread etc.

§ strong coupling between longitudinal and 
transverse wakefields – radiation loss

§ particles scattering off background ions 
(heavier ion plasma) – sec. ioniz. & dark current

§ field degradation due to ion motion & ion modes
(lighter ion plasma)

§ positron and bared ions in the blowout region 
both being positively charged



Hollow “fiber” accelerator - 1983

§ hollow tube in plasma

§ guide & self-focus 
high-intensity laser pulse

§ phase velocity 
close to speed of light 
(low on-axis density)

§ low ion concentration – on-axis
minimize acc. beam plasma-ion 
interaction



Hollow “fiber” acc. – further work 

laser-pulse driven
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The accelerating and focusing wake fields that can be excited by a short laser pulse in a hollow 
underdense plasma are examined. The evacuated channel in the plasma serves as an optical fiber to 
guide the laser pulse over many Rayleigh lengths. Wake fields excited by pla.sma current at the edge 
of the channel extend to the center where they may be used for ultrahigh gradient acceleration of 
particles over long distances. The wake field and equilibrium laser profiles are found analytically 
and compared to two-dimensional (2-D) particle-in-cell (PIC) simulations. Laser propagation is 
simulated over more than ten Rayleigh lengths. The accelerating gradients on the axis of a channel 
of radius c/ wp are of order of one-half of the gradients in a uniform plasma. For present high-power 
lasers, multi-GeV/m gradients are predicted. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Recent advances in short pulse laser technologyl.2 offer 
the possibility of ultrahigh gradient acceleration of particles 
in laser-driven plasma wakes. 3,4 Subpicosecond 10 TW 
pulses can generate acceleration gradients of order 10 
GeV/m in a plasma of density cm-3; however, the 
acceleration distance is severely limited because the Ray-
leigh lengths of such pulses are typically only a few milli-
meters. Thus it has been widely recognized that some form 
of optical guiding is needed. Several approaches to this prob-
lem have been previously discussed. In this article we ana-
lyze a new scheme based on propagating a short laser pulse 
in a hollow channel embedded in an otherwise homogeneous 
underdense plasma.5 This scheme provides optical guiding of 
the laser pulse and optimal wake-field profiles for accelerat-
ing particles. 

Several approaches to optical guiding have been previ-
ously discussed. In relativistic self-focusing the relativistic 
quiver motion of plasma electrons in the laser field6 causes a 
reduction of the index refraction on axis. Above a threshold 
power this mechanism provides optical guiding of the main 
body of the pulse. However, one-dimensional (I-D) theory? 
and two-dimensional (2-D) simulations8 - 10 predict that the 
leading edge of the pulse will not be wen guided. This sug-
gests that roughly the front c/ wp of the pulse etches or dif-
fracts away each Rayleigh length. To overcome this problem 
one can use a laser pulse that is very wide in the front and 
narrow in the back.9 This makes the Rayleigh length at the 
front sufficiently long. 

A second approach to optical guiding is to confine the 
laser in a preformed channel in the plasma. A version of this 
was proposed several years ago by Tajima II known as the 
plasma fiber accelerator. In this scheme a long laser pulse 

propagates down a rippled vacuum channel in an overdense 
plasma. Since the laser is evanescent in overdense plasma, 
this was supposed to act as a slow wave conducting struc-
ture. However, resonance absorption at the overdense chan-
nel edge can quickly degrade the laser (similar effects have 
been seen in simulations of related laser acceleration 
schemes involving overdense plasmaI2). More recently, opti-
cal guiding in a tailored density channel has been investi-
gated theoretically and numerically by Sprangle and 
co-workers.9 The density on axis is taken to be the usual 
density for wake excitation (i.e., no is chosen such that 
'TTclwp matches the laser pulse length), and the density rises 
parabolically with radius to confine the laser. They found that 
the accelerating wake is still in the channel. A re-
cent experiment by Durfee and Milchberg has already dem-
onstrated guiding of low-intensity laser light in a plasma 
channel. l3 

Here we propose a scheme for wake-field acceleration in 
a hollow underdense plasma.5 For simplicity, a "square" 
transverse plasma density profile with a step function 
plasma/vacuum interface will be assumed. In Sec. VI we 
discuss the effect of a boundary with nonzero thickness. and 
in the Appendix we analyze the general case for an arbitrary 
plasma profile. Since the index of refraction ( 
= w;/w2) in underdense plasma is less than the index 
in the evacuated central region 1), the laser can be 
confined as if it were in an optical fiber. The short laser pulse 
drives a plasma wake in the plasma at the edge of the hollow 
channel. The electromagnetic fringe fields of the wake ex-
tend to the center of the channel, enabling focusing and ac-
celeration of particles down the axis. This scheme differs 
from the plasma fiber accelerator in two important respects. 
First, since the plasma is underdense, resonance absorption 
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of the driving pulse at the channel walls is avoided. Second, 
the accelerating fields arise from a plasma wake rather than 
from a transverse magnetic (TM) component of the laser 
mode. The scheme differs from the parabolic channel of 
Sprangle et al. 8 in that the channel here is completely evacu-
ated, so that the wake fields arise from surface currents at the 
channel edge rather than density bunching at the channel 
axis. 

The main objective of this work is to show that a large 
amplitude wake can be generated over long distances by an 
optically guided laser pulse in a hollow channeL Although 
this same goal can be achieved in a parabolic channel, there 
are several reasons for considering the hollow channel case. 
First, it will be seen that the mode structure of the wake field 
in a hollow channel is ideal for accelerating high quality 
beams. The axial field component is independent of trans-
verse position, so particles at different radii gain energy at 
the same rate minimizing their energy spread. The focusing 
wake is weak and linear, helping to preserve the emittance of 
the beam. For a given plasma density, the wavelength is 
longer, increasing the bunch acceptance for injected beams. 
There may be other advantages to hollow channels. In sepa-
rate work we have found that laser pulses in hollow channels 
may be less subject to instabilities such as laser hosing and 
Raman scattering. The absence of plasma in the beam path 
eliminates any scattering of beam particles by plasma nuclei, 
although this is generally very minor. Finally, a hollow 
plasma channel may be easier to realize experimentally than 
a channel with a precisely tailored density profile. 

In Sec. II we analyze the plasma mode excited in a hol-
low plasma. In Sec. III we analyze the laser mode. The wake 
amplitudes are estimated in Sec. IV and compared to 2-D 
particle-in-cell (PIC) simulations in Sec. V. 

II. PLASMA SURFACE MODE-FRINGE FIELD 
ACCELERATOR 

We now consider the normal wake-field modes that can 
be excited in a plasma with a hollow channeL Assume that 
the laser pulse propagates down the z-direction. The channel 
supports a surface plasma wave. The mode structure follows 
from Maxwell's equations, 

I a 
VxE=---B 

C at ' 
41T I a 

VXB= -j+--E, c c at 
j= -enov, 

(Ia) 

(lb) 

(2) 

where no is the unperturbed plasma density, v is the per-
turbed electron velocity. The equation of motion for a cold 
stationary plasma is 

a -e 
at v= --;;;- (E- VI), (3) 

where E is the electric field of a plasma wave, I is the aver-
aged ponderomotive potential divided bye; 1= (tm e, 
Vosc=eEJmwo, and Es is the amplitude of the laser profile 
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to be found in Sec. III. Equation (3) is valid for Vosdc<11;l. 
Combining Eqs. (la) and (lb) and using Eqs. (2) and (3) 
gives the wave equation, 

2 2 2 
2 wp 1 a Wp 

V(V ·E)- V E+ -:z E+ '::2'a:;:Z E= -:z VI, (4) c c t c 

where w;=41Tnoe2/m. The normal wake-field modes now 
can be found from Eq. (4) by setting /=0. 

We analyze Eq. (4) in both slab and cylindrical geom-
etry. First in slab geometry, Fourier analyzing (4) gives the 
dispersion relations in the plasma and the channel, 

W 2 -c2k;-c2ki =0 in channel, (5a) 

in plasma. 
(5b) 

In plasma, the first term is the longitudinal mode (VxE=O) 
while the second term is the transverse mode (V ·E=O). We 
look for surface modes which are transverse, so kl becomes 
- Ki both in the channel and in the plasma, 

(6a) 

in plasma. (6b) 

The mode in the channel is transverse, so the mode in the 
plasma must also be transverse. Otherwise VXE would not 
be continuous as required by the fact that there are no linear 
surface currents. Since the laser is symmetric with respect to 
the z-axis, the ponderomotive force is symmetric and we 
assume symmetric solutions for the wake fields. The wake-
field solutions for E inside the channel (lyl <a, where 2a is 
the channel width) are 

Ez(Y ,z,t) =A cosh( K.LcY )ei(kzz-wt), 

Ey(Y ,z,t) = B sinh( K.LcY )ei(kzz-wt), 

and in the plasma (lyl>a) 

Ez(Y ,z,t) = Ce - K.Lp(lyl-a)ei(kzz-wt), 

(7a) 

(7b) 

(8a) 

Ey(y,z,t) =De -K.Lp(lyl-a)ei(kzz-wt), (8b) 

where A, B, C, D are as yet undetermined constants. Using 
V· E =0 in the plasma and in the channel, the continuity of 
E tangential = E z and the continuity of D normal = €E Y' where 
€= l-w;lw2 in the plasma and €= 1 in the channel, we obtain 
the dispersion relation, 

(9) 

We are interested in the mode with phase velocity 
v",=(wlkz)=c (since v", will be determined by the group 
velocity of the laser pulse =c as discussed in the next sec-
tion). Then from Eq. (6) K.Lca = walY",v",<11; 1 [where 
Y",=(1- v;lc 2 ) -112], so that the dispersion relation simpli-
fies to 

(10) 

Chiou et al. 311  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
152.3.102.242 On: Wed, 23 Apr 2014 23:45:37

¼ nw for r " rc, where nw is the density in the wall, nc is the
density in the channel (nc # nw), and rc is the channel ra-
dius. We will consider kwrc $1 where k2

w ¼ 4pnwe2=mec2 is
the plasma wavenumber corresponding to the wall density.
To provide weak focusing of an electron beam we will con-
sider k2

c # k2
w, where k2

c ¼ 4pnce2=mec2 is the plasma wave-
number corresponding to the channel density.

Excitation of large amplitude plasma waves requires

high-intensity lasers, a0$1, where a2
0 ’ 7:32%10&19k2

0½lm(
I0½W=cm2( with k0 the laser wavelength and I0 the peak laser
intensity. Note that such a plasma channel can effectively
guide a laser pulse,12 as the channel depth (not the on-axis
density) provides for laser guiding.1 The laser spot size w0

for quasi-matched propagation can be computed following
Ref. 17, and w0$rc > 1 is typically required for guiding. In

this regime a2
0=ð1 þ a2

0=2Þ1=2 > k2
c w2

0=2, and the transverse
ponderomotive force of the laser will expel the channel elec-
trons, leaving an ion column.1 This ion column can provide
linear, phase-independent focusing for an ultra-relativistic
witness bunch. In the following we will consider wakefields
excited by a laser driver, although a particle beam driver
can also excite wakefields with similar properties.

The wake excited in such a channel will consists of an
electromagnetic wake owing to surface currents driven in the
channel walls and a wake owing to the background ions in
the channel. In the limit k2

c # k2
w, the accelerating field in

the channel is dominated by the currents in the wall and12

Ez ’&EwX
ðf

1
kdf0cos½kðf&f0Þ(a2ðr ¼ rc; f0Þ=4; (1)

where aðr; fÞ ¼ eA=mec2 is the normalized transverse vector
potential profile of the laser, f ¼ z&bpct; bpc is the driver
velocity and cp¼ ð1&b2

pÞ
&1=2 , 1. For a laser driver,

cp$k0=kw ¼ 2p=ðkwk0Þ. The excited mode wavenum-
ber12,14 is k ¼ kwX with

X ¼ 1 þ kwrcK0ðkwrcÞ
2K1ðkwrcÞ

" #&1=2

(2)

and, for typical parameters, X$1. The focusing field
excited in the channel is given by

Er&bBh ’Ec
kcr

2
&Ew

kwr

4
ðc&2 þ c&2

p ÞX
2

%
ðf

1
kdf0sin½kðf&f0Þ(a2ðr ¼ rc; f0Þ=4; (3)

where c2 ¼ 1=ð1&b2Þ , 1 and cb is the witness beam
velocity. Here Ew ¼ mec2kw=e and Ec ¼ mec2kc=e. The first
term on the right-hand side of Eq. (3) is due to the ion col-
umn and the second term is due to the currents driven in the
channel walls. The focusing force is linear, to order Oðc&2

p Þ,
with respect to the radial position Er&bBh / r and hence
the rms normalized transverse (slice) emittance is conserved
to that order. In the regime nc=nw > a2

0ðrcÞ=ð8c2
pÞ and

c2 , c2
p, the focusing from the channel ion density domi-

nates Er&bBh ’ Eckcr=2 and kb ¼ kc=
ffiffiffiffiffi
2c
p

. In this case the
focusing force is uniform (in phase) over the entire bunch,
eliminating any betatron mismatch between the head and tail

of the beam.16 Matched propagation is achieved for
nc=nw ¼ 2ðkw!nÞ2=½cðkwrxÞ4(. For the case of an effectively
hollow channel, the focusing forces can be controlled by
using an external (permanent magnet) focusing system.
Acceleration of positron beams would operate in this regime.

Figure 1 shows the normalized longitudinal Ez=Ew and
transverse ðEr &BhÞ=Ew wakefields excited by a quasi-
matched,17 resonant Gaussian laser with a0 ¼ 1; k0=kw

¼ 100, and kww0 ¼ 2:3, in a channel with kwrc ¼ 1:5 and
nc=nw ¼ 10&5; 5%10&5 and 10&4. The wakefields shown in
Fig. 1 were computed using the particle-in-cell code
INF&RNO.18 Figure 1(a) shows the accelerating field (deter-
mined by the wall density) is independent of the channel
density for nc # nw. In addition, the accelerating field is uni-
form with respect to radial position inside the channel.
Figure 1(b) shows independent control over the focusing on
a witness bunch (for fixed accelerating field) by varying the
channel density. These transverse wakefields have excellent
properties for emittance preservation, namely linear / r and
axially constant throughout a witness beam.

It is well-known that emittance growth can occur by
elastic scattering with the plasma ions.7,19,20 Coulomb colli-
sions results in a change of the rms divergence of the beam
particle.21 For the case of a near-hollow channel,

dhDh2
xi

dz
¼ 4pr2

e

c2

ðrmax

rmin

dr

r
Z2ni

¼ re

c2
½Zck2

c lnðrc=rminÞ þ Zwk2
wlnð1 þ kD=rcÞ(; (4)

FIG. 1. Plasma wakefield excited by a quasi-matched, resonant Gaussian
laser pulse with a0 ¼ 1 and kww0 ¼ 2:3 in a near-hollow channel with
kwrc ¼ 1:5 and nc=nw ¼ 10&5; 5%10&5 and 10& 4. (a) Accelerating wake-
field Ez=Ew in the channel versus kwðz&ctÞ. (b) Focusing wakefield
ðEr &BhÞ=Ew in the channel (at the peak Ez) versus kwr.
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Hollow “fiber” acc. – beam-driven 

LETTER
doi:10.1038/nature14890

Multi-gigaelectronvolt acceleration of positrons
in a self-loaded plasma wakefield
S. Corde1,2, E. Adli1,3, J. M. Allen1, W. An4,5, C. I. Clarke1, C. E. Clayton4, J. P. Delahaye1, J. Frederico1, S. Gessner1, S. Z. Green1,
M. J. Hogan1, C. Joshi4, N. Lipkowitz1, M. Litos1, W. Lu6, K. A. Marsh4, W. B. Mori4,5, M. Schmeltz1, N. Vafaei-Najafabadi4,
D. Walz1, V. Yakimenko1 & G. Yocky1

Electrical breakdown sets a limit on the kinetic energy that part-
icles in a conventional radio-frequency accelerator can reach. New
accelerator concepts must be developed to achieve higher energies
and to make future particle colliders more compact and affordable.
The plasma wakefield accelerator (PWFA) embodies one such con-
cept, in which the electric field of a plasma wake excited by a bunch
of charged particles (such as electrons) is used to accelerate a trail-
ing bunch of particles. To apply plasma acceleration to electron–
positron colliders, it is imperative that both the electrons and their
antimatter counterpart, the positrons, are efficiently accelerated at
high fields using plasmas1. Although substantial progress has
recently been reported on high-field, high-efficiency acceleration
of electrons in a PWFA powered by an electron bunch2, such an
electron-driven wake is unsuitable for the acceleration and focus-
ing of a positron bunch. Here we demonstrate a new regime of
PWFAs where particles in the front of a single positron bunch
transfer their energy to a substantial number of those in the rear
of the same bunch by exciting a wakefield in the plasma. In the
process, the accelerating field is altered—‘self-loaded’—so that
about a billion positrons gain five gigaelectronvolts of energy with
a narrow energy spread over a distance of just 1.3 metres. They
extract about 30 per cent of the wake’s energy and form a spectrally
distinct bunch with a root-mean-square energy spread as low as

1.8 per cent. This ability to transfer energy efficiently from the
front to the rear within a single positron bunch makes the PWFA
scheme very attractive as an energy booster to an electron–positron
collider.

Future high-energy particle colliders will operate at the frontier of
particle physics, with particle energies in the range of several trillion
electronvolts3. Beyond the Large Hadron Collider (LHC) at the
European Organization for Nuclear Research (CERN), physicists envi-
sion building even bigger machines, such as the Future Circular
Collider4, which would collide protons at energies of around 100 TeV,
but would require a tunnel of circumference approximately 100 km.
Electron–positron linear colliders are also being considered, with
proposed machines such as the International Linear Collider5 (ILC)
and the Compact Linear Collider6 (CLIC). Based on existing radio-
frequency technology, they are also expensive and tens of kilometres
long. Looking beyond these machines, methods of building compact
and efficient particle colliders—such as the muon collider7, the laser
wakefield accelerator8 and the PWFA9—are under development. Of
these, the PWFA has showed an energy gain of tens of billions of
electronvolts in less than one metre10, and has recently shown high-
efficiency acceleration of an electron bunch with a narrow energy
spread containing a substantial charge, at a high energy gain per unit
length (or gradient) (ref. 2). However, for a future PWFA-based
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Figure 1 | Simulated plasma wakes driven by short and intense positron
bunches. The electron plasma density in the y–j plane is shown after a
propagation distance of s 5 ct 5 135 cm into the plasma, where y is the
dimension transverse to the direction of motion of the bunch, and j 5 z 2 ct is
the dimension parallel to the motion. In both panels the one-third-of-the-
maximum contour of the initial positron bunch density is represented by the
orange dashed line, the on-axis density profile of the initial positron bunch by
the grey dashed line, and the on-axis longitudinal electric field Ez by the red

solid line. The beam and plasma parameters (described in the Fig. 3 legend) are
the same as those in the experiment. a, The unloaded plasma wake, for which
no positrons are being accelerated by the wake because the bunch has been
terminated just as Ez reverses sign. b, The self-loaded plasma wake, where the
trailing particles of a single bunch extract energy from the wake excited by
the particles in the front. In a and b, the colour scale represents the perturbed
plasma electron density (the plasma density prior to the passage of the beam is
constant at 8 3 1016 cm23).
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particle collider, it is imperative to demonstrate that the antimatter
counterpart of the electron, the positron, can also be accelerated in a
PWFA at high gradient and with high-energy efficiency.

The longitudinal component of the electric field Ez associated with a
wake produced by the passage of either an intense ultra-relativistic
electron or positron bunch through a plasma can, in principle, be used
to accelerate positrons. In both cases, a dense (nb . np), tightly focused
(kpsr , 1), short (kpsz , 1), ultra-relativistic (c ? 1) drive bunch
(electron or positron) can be used to excite a nonlinear (non-sinus-
oidal) wake in a plasma. Here nb, np, kp, sr, sz and c are the bunch
density, the plasma density, the wavenumber of the plasma wave, the
root-mean-square (r.m.s.) focused transverse spot size, the r.m.s. lon-
gitudinal size and the Lorentz factor of the bunch, respectively.
However, the nonlinear wakes produced by the two types of drivers
are qualitatively different1. With an electron driver, a region devoid of
plasma electrons, called an ion cavity, is formed as these electrons are
blown out by the transverse electric field of the bunch11,12. Within this
ion cavity, the transverse force is defocusing for positrons and so pre-
vents positron acceleration. To avoid this problem, the use of a hollow
plasma channel to produce wakes without a focusing force13–15, or the
use of Laguerre–Gaussian laser pulses to drive doughnut-shaped wakes
with a strong focusing force for positrons16, have been suggested.

In contrast to the electron-driven wake, when an otherwise similar
positron bunch is used, plasma electrons that are radially located
within a few plasma skin depths (k!1

p , it the penetration depth of a
low-frequency electromagnetic wave in a plasma) from the bunch are
attracted inward (rather than being expelled) by the transverse electric
field of the bunch17–19. As the plasma electrons flow in, positrons
experience a negative or decelerating Ez, losing energy as they do work
on the plasma electrons. Once most plasma electrons have crossed the
propagation axis, Ez abruptly switches sign from negative to positive
and becomes accelerating for positrons. If there are no positrons to
sample the accelerating field, the wake is said to be unloaded because
no energy is extracted from it. This is shown in Fig. 1a, taken from a
simulation using the three-dimensional particle-in-cell code
QuickPIC20,21. In this case, plasma electrons flow outward after they
cross the propagation axis, which leads to the formation of a cavity in
which the ion density exceeds the electron density. When a sufficient
number of positrons are sampling the accelerating field, a large num-
ber of electrons crossing the axis remain close to the axis (see Fig. 1b).
Consequently the longitudinal and the transverse fields are both
strongly altered, that is, loaded. Owing to the presence of the plasma
electrons on axis, the accelerated positrons are guided along the length
of the plasma. These positrons can extract a substantial fraction of the
wake’s energy and alter the shape of the Ez field, which becomes more
uniform and produces a narrow-energy-spread peak in the accelerated
part of the positron spectrum. This process occurs in the positron-
driven wake without the need for a distinct trailing bunch22. In other
words, the front of a single positron bunch can excite a wake in a
plasma while the rear of the same bunch loads and extracts energy
from this wake (as in Fig. 1b). This regime is referred to as the self-
loaded plasma wakefield.

The formation of an accelerated narrow-energy-spread positron
bunch was discovered in an experiment conducted at the SLAC’s
Facility for Advanced Accelerator Experimental Tests23 (FACET),
using its 20.35-GeV positron beam (see Methods). A single bunch
containing approximately 1.4 3 1010 positrons and having an r.m.s.
bunch length in the range 30–50mm was focused to an r.m.s. trans-
verse spot size of less than 100mm at the entrance of a lithium plasma
(vacuum beam density nb < 0.2–1 3 1016 cm23). The plasma is pro-
duced by laser ionization of a 1.15-m-long lithium vapour column of
uniform density that has 15-cm-long density up- and down-ramps on
either end24,25 (see Methods). The electron density of the plasma was
set to np 5 8 3 1016 cm23 by controlling the pressure and the temper-
ature of the lithium vapour. After the interaction with the plasma, an
imaging spectrometer consisting of a quadrupole magnet doublet, a

strong dipole magnet and a Cherenkov detector26 was used to char-
acterize the energy spectrum of the positron beam (see Methods). The
quadrupole magnet doublet was set up to image where the positron
beam exits the plasma into the plane of the detector for a given positron
energy: the energy set-point Eimage. To record both the decelerated and
the accelerated parts of the positron spectrum, Eimage of the quadrupole
magnet doublet was varied in increments of 2.5 GeV from 10.35 GeV
to 27.85 GeV.

Figure 2a and b show the accelerated part of the final energy spec-
trum of the positron bunch after its passage through the plasma, where
Eimage is set to 22.85 GeV and 25.35 GeV, respectively. The accelerated
positrons in Fig. 2a and b have peaks at 24.75 6 0.27 GeV and
26.11 6 0.35 GeV. These two examples show that the accelerated posi-
trons have a narrow energy peak, albeit on top of a broader ‘shoulder’.
The spectral peaks are fitted by an asymmetric Gaussian function. The
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lines) are 1.8% and 2.2% r.m.s., respectively, while the full width at
half-maximum (FWHM) energy spreads associated with the experi-
mental spectra (black solid lines) are 4.0% and 6.1%, respectively.
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Figure 2 | Experimental positron energy spectra. a, b, Two examples of the
accelerated portion of the spectrum of the positrons after the interaction with
the plasma with Eimage at 22.85 GeV (a) and 25.35 GeV (b). c, An example of the
decelerated portion of the positron spectrum with Eimage at 12.85 GeV. In all
panels, the density of charge per unit energy and length of the dispersed
positron beam profile is shown in colour, and the spectral charge density dQ/dE
is represented by the black solid line (right scale). Asymmetric Gaussian fits to
the peaks in a and b are shown as red dashed lines. Particles that do not
participate in the interaction appear to be saturated at the initial beam energy,
20.35 GeV.
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The question of what beam quality and efficiency are ultimately achievable in plasma-based
accelerators is addressed analytically and through self-consistent particle-in-cell simulations. A strategy
for phasing and beam loading to minimize energy spread while at the same time achieving high energy
extraction efficiency is proposed. Preservation of beam emittance is facilitated by the use of a hollow
channel. [S0031-9007(98)07381-5]
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The past two years have seen great advances in laser-
driven plasmas as media for particle acceleration [1,2].
Plasma waves (wakefields) of magnitude on the order of
100 GeVym have been excited with relativistic phase ve-
locities, electron beams accelerated to 100 MeV within
a few millimeters, and peak currents of tens of kilo-
amperes generated [3]. Recent computational work [4]
has added significant insight into the physical mecha-
nisms underlying these experiments. The bulk of these
near term experiments rely on an instability for plasma
wave growth and typically result in 100% energy spread
of accelerated particles. These works have emphasized
high accelerating gradients and energy gains, and less at-
tention has been paid to the qualities of the beams (en-
ergy spread, emittance, particle number). Moreover, the
question of overall efficiency has not yet been seriously
addressed.
In this Letter we address self-consistently the overall

efficiency, beam emittance, and energy spread for a
plasma accelerator. In order to overcome fundamental
tradeoffs between these quantities we exploit adjust-
ment of the insertion phase to equalize energy gain be-
tween head and tail and thereby minimize energy spread.
Particle-in-cell (PIC) simulations are used to show that it
is possible to accelerate beams in plasmas with high beam
quality and high overall efficiency.
We consider one particular realization of a plasma ac-

celerator, namely, a hollow channel plasma accelerator [5]
with Gaussian beams. Wakefields in hollow channels can
be excited by either a short laser pulse or a high cur-
rent particle beam. In the simulations we consider the
wake excited by an electron beam. However, most of the
results apply to the laser-driven case as well. Channel
formation is currently a topic of great experimental in-
vestigation. Leading approaches include laser-produced
channels [6] and hollow capillary discharges [7]. The
hollow channel case is significant because it offers not
only laser guiding (for laser-driven wakefield accelera-
tors) but also the ideal accelerating field structure (i.e.,
transversely uniform accelerating fields and minimum fo-
cusing/defocusing forces). Thus the results here address

the question of what is the highest beam quality and effi-
ciency ultimately possible in high gradient plasma-based
accelerators.
We begin by considering an ideal hollow plasma (for

simplicity, we analyze slab geometry; however, the con-
clusions apply to cylindrical geometry as well). The
plasma is assumed to be homogeneous everywhere except
between y ≠ 2a to y ≠ 1a, between which it is empty.
The typical wakefield excited by a laser pulse has been
worked out previously [5] and is shown in Fig. 1. The
wavelength of the longitudinal field can be approximated
as lch ≠ lp

p
1 1 kpa where kp ≠ 2pylp ≠ vpyc and

vp is the plasma frequency ≠
p

4pn0e
2ym. The trans-

verse profile of the accelerating gradient is uniform across
the channel and drops exponentially outside the channel.
The focusing force is zero inside the channel for a very
relativistic particle. The spikes at the channel walls are
due to the plasma/vacuum boundaries. We comment that
if particles hit the channel boundaries, the spikelike force
can turn the particles around (like bouncing off of a wall).
This may offer an interesting means of transporting very
intense space charge dominated beams.

FIG. 1. Typical wakefield structure in a hollow plasma
channel. (a) Accelerating gradient Wk vs kpz; (b) accelerating
gradient vs kpx'; and (c) focusing field W' vs kpx'.
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Excitation of a nonlinear plasma ion wake by intense energy sources
with applications to the crunch-in regime
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We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime
driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a
driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the
repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this
evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for
the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force
phases in the bubble couple to ion motion significantly differently than in the linear electron mode. The
electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble
cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton
is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-
in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for
positron acceleration in the crunch-in regime.

DOI: 10.1103/PhysRevAccelBeams.20.081004

I. INTRODUCTION

Plasma ions are generally assumed to be stationary in the
theory of ultrarelativistic plasma electron waves [1]. Such
waves are regularly excited by high-intensity energy
sources such as an ultrashort laser or particle beams [2]
and have proven to be promising for accelerating and
transporting beams with 109 Vm−1 field strengths. The
nonlinear regime of cavitated electron “bubble” modes
[3–5] of these waves which rely on the immobility of ions
for exciting charge-separation fields, have been proposed to
form the basis of plasma colliders [6].
Important exceptions to the fundamental assumption of

stationary ions occur as the intensities of the energy sources
become high enough (for instance in the final stage of
envisioned plasma-based collider designs) to lead to
significant ion trajectories within a period of the electron
wave [7]. Ion motion also invariably becomes important
over several periods of the electron wake train further
behind the driver because as we will show the energy left
over in the electron oscillation modes couples to the ion
modes. This long-term evolution of wakefields in plasma
[8] constrains the repetition rate of colliders or light sources

that use plasma-based acceleration, and is the primary
motivation for this work.
This work is fundamental and important from two

different perspectives: (i) it is the first analytical consid-
eration of an ion-wake driven by the bubble regime of
electron plasma waves. Our work proves the excitation and
persistence of a radially propagating cylindrical ion soliton-
like mode. It is shown to be directly excited by the bubble
fields, unlike the ion motion driven behind a linear electron
wake. Its radial motion is sustained by the thermalizing
wake energy in electrons. (ii) We show that an ion-wake
channel, which can be meter scale for the beam-driven
plasma electron waves, can be used for a novel hollow-
channel mode in the “crunch-in” regime [9,10]. The
evacuation of electrons and ions behind the soliton results
in a channel-like ion-wake structure which persists over
many hundreds of plasma electron periods and is here
shown to be suitable for exciting nonlinear hollow-channel
electron modes driven by relativistic positron and electron
beams, first investigated by the author.
Ion wake is analyzed theoretically and using computa-

tional modeling, to show that it is the time asymmetry of the
phases of the focusing fields of the bubble which leads to
the excitation of a nonlinear ion-acoustic mode in the form
of a cylindrical ion soliton. Its characteristics are similar to
the solutions of the cylindrical Korteweg–de Vries equation
(cKdV) [11–14]. The bubble electron mode may be driven
by any type of an ultrashort high energy-density energy
source such as an intense laser [15] or a particle beam [16].
This work gains a distinct importance because the bubble

*aakash.sahai@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 081004 (2017)

2469-9888=17=20(8)=081004(15) 081004-1 Published by the American Physical Society

regime is the underlying acceleration mode for future
plasma-based colliders, but there is currently no under-
standing of the long-term behavior of the plasma [8,17]
which determines its state for the succeeding bunches,
defining an upper limit on the repetition rate.
The critical result of this work is the fact that the ion

wake is a cylindrical solitonlike mode which is self-
reinforcing collective motion of ions, resulting in consid-
erable lengthening of its lifetime in comparison to an
entirely randomized ion motion. The long-lived ion-mode
leftover in the plasma is tracked over many hundreds of
electron periods in simulations. This establishes its per-
sistence for hundreds of picosecond time scale for an
operating plasma density of 1017 cm−3.
The excitation of crunch-in using the nonlinear ion-wake

mode for plasma-based acceleration in a hollow channel
using positron beam is demonstrated. The crunch-in regime
in an ideal hollow channel using positron beams was first

introduced in [9,10] and Chapter 8 of [18]. In this regime,
the excitation of strong focusing fields was shown in
complete contrast to the conventionally established con-
clusion that relativistic particles excite zero focusing fields
in a hollow channel [19]. The ion-wake channel-wall
electrons collapse towards the energy-propagation axis
resulting in a nonlinear on-axis electron density compres-
sion. The optimal compression is shown to be only possible
if the driving beam properties are matched to the channel
radius [9], a strong characteristic dependence on the
excitation which is a signature of nonlinearity. The choice
of an appropriate channel radius is enabled by waiting for
the expansion of the ion-wake channel to take the ion-wake
radius to the chosen value.
For outlining the detailed physics in the sections below,

representative particle-in-cell (PIC) simulation snapshots in
Figs. 1 and 2 illustrate the excitation phase and the
propagation phase of the ion soliton, respectively. The
detailed initial conditions and setup of the simulations are
in Secs. III B and IV B. Figure 1 shows the excitation phase
at an early time when the bubble wake train is still
executing orderly oscillations and its fields have begun
to excite inertial ion motion resulting in a solitonlike ion-
wake structure (δni=n0 ≃ 0.2) as seen in Figs. 1(b)
and 1(c). At later times shown in Fig. 2 the radial

FIG. 1. Laser driven nonlinear ion wake at early time
(t ¼ 46ω−1

pe ¼ 0.17f−1pi , where fpi is the plasma ion frequency)
in mi ¼ mp ¼ 1836me plasma. (a) Electron bubble mode in
Cartesian coordinates (fixed box) with ω0

ωpe
¼ 10 driven by a

matched laser pulse (vector potential a0 ¼ 4 and frequency ω0)
with RB≃ 4 c

ωpe
. (b) Nonlinear ion wake in the form of a

cylindrical ion-soliton of radius ≃4 c
ωpe

excited behind the bubble

electron wake in a proton plasma. (c) Transverse ion-density
profile at z ¼ 15c=ωpe. Notice that the ion density perturbation in
this excitation phase is still building up and is a fraction of the
background ion density, δni

n0
< 1.

FIG. 2. Electron beam-driven nonlinear ion wake at late
time (t ¼ 460ω−1

pe ¼ 1.7f−1pi ) in mi ¼ mp ¼ 1836me plasma.
(a) Beam-driven ion-wake electron density in cylindrical coor-
dinates (fixed box). The beam parameters are nb ¼ 5n0,
σr ¼ 0.5c=ωpe, σz ¼ 1.5c=ωpe, γb ¼ 38; 000, these beam-plasma
parameters are quite similar to [5]. (b) Corresponding ion density
in cylindrical coordinates (fixed box). Note the N-soliton for-
mation in the ion density, 50c=ωpe ≤ z ≤ 100c=ωpe. The later
times in the time evolution of the ion wake are also inferred from
density snapshots farther behind the beam. (c) Radial electron and
ion density profile at z ¼ 150c=ωpe. A full movie of radial
electron and ion density dynamics is presented in Supplemental
Material [20].
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2 Theory - Dynamics of the Plasma Electron

Classifying the onset of non-linearity and wavelength of the density oscillations both require understanding
of the electron dynamics within the plasma. The plasma considered is one of density 0 for r < rch and np for
r > rch. A positron driving beam of density nb and volume Vb – moving with velocity vbẑ = c�bẑ – perturbs
electrons within the plasma electrostatically. Subsequently, the plasma electrons oscillate freely in the radial
direction as a result of the electric field that has been set up due to the no longer quasineutral plasma.

This electric field is found using Gauss’ law,
‹

S
E · dS =

Qenc

✏0
, (2.1)

where S is a closed Gaussian surface, E is the electric field, dS is the surface area element of S, Qenc is the
total charge enclosed within S, and ✏0 = 8.85⇥ 10�12 Fm�1 is the permittivity of free space. As the plasma
is cylindrically symmetric, a cylinder of radius r and length l is used as the Gaussian surface S. dS can
therefore be simplified to dS = r d✓ dzr̂. Assuming the electric field to be purely radial, E = Er r̂, the left
hand side of Gauss’ law is simplified (after integrating) to 2⇡rlEr.

The enclosed charge is given by the integral of the ion charge density over the volume enclosed by S.
The ions within the plasma are of density np and e↵ective charge e = 1.60⇥ 10�19 C. As the plasma
density np is constant, the enclosed charge is given by the net volume of plasma within S multiplied by enp,
Qenc = enp⇡(r2 � r2ch)l. Gauss’ law thus gives the following form for the radial electric field set up by the
non-quasineutral plasma:

Er(r) =
enp

✏0
· 1

2r
(r2 � r2ch). (2.2)

As the electric field vanishes for r = rch, equation (2.2) describes the electric field for an electron situated
initially on the channel wall.

The force experienced by a given plasma electron is found by multiplying the electric field by �e, the
electronic charge. Finally, a transformation to the frame of the driving beam ⇠ = vbt � z is made. This
is to allow for direct comparisons to be made between the model and OSIRIS simulations (section 3). The
equation of motion is

me
d2r

d⇠2
+

1

c2�2
b

npe2

✏0
· 1

2r
(r2 � r2ch) = 0, (2.3)

where me = 9.11⇥ 10�31 kg is the electron mass. Defining the plasma frequency !p =
q

npe
2

me✏0
and ⇢ = r/rch,

equation (2.3) is rewritten as

d2⇢

d⇠2
+

1

2�2
b

⇣!p

c

⌘2
· 1
⇢
(⇢2 � 1) = 0. (2.4)

The above equation is a non-linear second order di↵erential equation and describes the natural oscillations
of a plasma electron about the channel wall. The lack of charge within the channel wall gives rise to an
asymmetry in these oscillations. Setting rch = 0 returns the standard simple harmonic oscillations seen in
homogeneous plasmas about a cylindrical axis[8].
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2.1 Solving for Weakly Driven, Linear Oscillations

Equation (2.4) is readily solvable when considering small displacements of the electron from the channel
wall. These small displacements are valid for very low driving beam charges or large channel radii, when the
electrostatic force of the beam acting on the plasma electrons is small.

In this limit, r ⇡ rch, and equation (2.3) is linearised using

r2 � r2ch =
XXXXX(r � rch)

2 + 2rch(r � rch)

⇡ 2rch(r � rch), (2.5)

where the first term on the right hand side is a second order term and has been removed. The linearised
equation of motion is thus

d2r

d⇠2
= � (!p/c)2

�2
b

(r � rch), (2.6)

which has the solution

r(⇠) = rch +A sin

✓
!p

c�b
⇠

◆
, (2.7)

where A is a constant. For an ultrarelativistic driving beam, �b = 1, and so an immediate form for the
oscillation wavelength in the linear/weakly excited case is

�osc =
2⇡c

!p
, (2.8)

which is the standard result for plasma oscillations in an initially homogeneous plasma[8].

2.2 Solving for Strongly Driven, Non-linear Oscillations

Solving equation (2.4) in general requires calculation of the plasma electron’s initial e↵ective velocity ⇢0 for a
given radial position ⇢. Three basic assumptions are made to simplify the calculation to a good approximation.

The first is that the driving beam is assumed to be a quasistatic[9] point charge of total charge Q. This
assumption is valid provided the plasma electrons do not intersect the driving beam, as Gauss’ law states
that the electric field intersecting a Gaussian surface S is the same regardless of the shape of the charge
distribution within S. In section 4.3.2, it was found that if significant numbers of electrons intersect the
beam, any subsequent density oscillations are incoherent, leading to undesirably weak accelerating electric
fields. Therefore, the given assumption is valid for the purpose of achieving coherent, non-linear oscillations.
Quasistaticity ensures the shape or size of the beam do not change signifcantly over time such that beam-
plasma intersections do not arise.

The second assumption requires that electrons excited by the driving beam are no longer influenced by
the driving beam beyond the first collapse to the axis. In other words, the primary electron collapse occurs
at ⇠ � 0, corresponding an electric potential of approximately zero. This assumption simplifies calculation
of the kinetic energy gained by the electron due to the driving beam, as the radial position of the electron at
collapse need no longer be determined.

The final assumption is that the kinetic energy gained by the electron is primarily radial kinetic energy.
This simplifies determination of the electron velocity at the channel wall (section 2.2.2).

2.2.1 Transforming to first order

As equation (2.4) is an autonomous ODE (i.e. an ODE with no dependence on ⇠[10]), the following manip-
ulation can be made[9]:
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2 Theory - Dynamics of the Plasma Electron

Classifying the onset of non-linearity and wavelength of the density oscillations both require understanding
of the electron dynamics within the plasma. The plasma considered is one of density 0 for r < rch and np for
r > rch. A positron driving beam of density nb and volume Vb – moving with velocity vbẑ = c�bẑ – perturbs
electrons within the plasma electrostatically. Subsequently, the plasma electrons oscillate freely in the radial
direction as a result of the electric field that has been set up due to the no longer quasineutral plasma.

This electric field is found using Gauss’ law,
‹

S
E · dS =

Qenc

✏0
, (2.1)

where S is a closed Gaussian surface, E is the electric field, dS is the surface area element of S, Qenc is the
total charge enclosed within S, and ✏0 = 8.85⇥ 10�12 Fm�1 is the permittivity of free space. As the plasma
is cylindrically symmetric, a cylinder of radius r and length l is used as the Gaussian surface S. dS can
therefore be simplified to dS = r d✓ dzr̂. Assuming the electric field to be purely radial, E = Er r̂, the left
hand side of Gauss’ law is simplified (after integrating) to 2⇡rlEr.

The enclosed charge is given by the integral of the ion charge density over the volume enclosed by S.
The ions within the plasma are of density np and e↵ective charge e = 1.60⇥ 10�19 C. As the plasma
density np is constant, the enclosed charge is given by the net volume of plasma within S multiplied by enp,
Qenc = enp⇡(r2 � r2ch)l. Gauss’ law thus gives the following form for the radial electric field set up by the
non-quasineutral plasma:

Er(r) =
enp

✏0
· 1

2r
(r2 � r2ch). (2.2)

As the electric field vanishes for r = rch, equation (2.2) describes the electric field for an electron situated
initially on the channel wall.

The force experienced by a given plasma electron is found by multiplying the electric field by �e, the
electronic charge. Finally, a transformation to the frame of the driving beam ⇠ = vbt � z is made. This
is to allow for direct comparisons to be made between the model and OSIRIS simulations (section 3). The
equation of motion is

me
d2r

d⇠2
+

1

c2�2
b

npe2

✏0
· 1

2r
(r2 � r2ch) = 0, (2.3)

where me = 9.11⇥ 10�31 kg is the electron mass. Defining the plasma frequency !p =
q

npe
2

me✏0
and ⇢ = r/rch,

equation (2.3) is rewritten as

d2⇢

d⇠2
+

1

2�2
b

⇣!p

c

⌘2
· 1
⇢
(⇢2 � 1) = 0. (2.4)

The above equation is a non-linear second order di↵erential equation and describes the natural oscillations
of a plasma electron about the channel wall. The lack of charge within the channel wall gives rise to an
asymmetry in these oscillations. Setting rch = 0 returns the standard simple harmonic oscillations seen in
homogeneous plasmas about a cylindrical axis[8].

3

Marcus Quantrill

2 Theory - Dynamics of the Plasma Electron

Classifying the onset of non-linearity and wavelength of the density oscillations both require understanding
of the electron dynamics within the plasma. The plasma considered is one of density 0 for r < rch and np for
r > rch. A positron driving beam of density nb and volume Vb – moving with velocity vbẑ = c�bẑ – perturbs
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The above equation is a non-linear second order di↵erential equation and describes the natural oscillations
of a plasma electron about the channel wall. The lack of charge within the channel wall gives rise to an
asymmetry in these oscillations. Setting rch = 0 returns the standard simple harmonic oscillations seen in
homogeneous plasmas about a cylindrical axis[8].
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2.1 Solving for Weakly Driven, Linear Oscillations

Equation (2.4) is readily solvable when considering small displacements of the electron from the channel
wall. These small displacements are valid for very low driving beam charges or large channel radii, when the
electrostatic force of the beam acting on the plasma electrons is small.

In this limit, r ⇡ rch, and equation (2.3) is linearised using

r2 � r2ch =
XXXXX(r � rch)

2 + 2rch(r � rch)

⇡ 2rch(r � rch), (2.5)

where the first term on the right hand side is a second order term and has been removed. The linearised
equation of motion is thus

d2r

d⇠2
= � (!p/c)2

�2
b

(r � rch), (2.6)

which has the solution

r(⇠) = rch +A sin

✓
!p

c�b
⇠

◆
, (2.7)

where A is a constant. For an ultrarelativistic driving beam, �b = 1, and so an immediate form for the
oscillation wavelength in the linear/weakly excited case is

�osc =
2⇡c

!p
, (2.8)

which is the standard result for plasma oscillations in an initially homogeneous plasma[8].

2.2 Solving for Strongly Driven, Non-linear Oscillations

Solving equation (2.4) in general requires calculation of the plasma electron’s initial e↵ective velocity ⇢0 for a
given radial position ⇢. Three basic assumptions are made to simplify the calculation to a good approximation.

The first is that the driving beam is assumed to be a quasistatic[9] point charge of total charge Q. This
assumption is valid provided the plasma electrons do not intersect the driving beam, as Gauss’ law states
that the electric field intersecting a Gaussian surface S is the same regardless of the shape of the charge
distribution within S. In section 4.3.2, it was found that if significant numbers of electrons intersect the
beam, any subsequent density oscillations are incoherent, leading to undesirably weak accelerating electric
fields. Therefore, the given assumption is valid for the purpose of achieving coherent, non-linear oscillations.
Quasistaticity ensures the shape or size of the beam do not change signifcantly over time such that beam-
plasma intersections do not arise.

The second assumption requires that electrons excited by the driving beam are no longer influenced by
the driving beam beyond the first collapse to the axis. In other words, the primary electron collapse occurs
at ⇠ � 0, corresponding an electric potential of approximately zero. This assumption simplifies calculation
of the kinetic energy gained by the electron due to the driving beam, as the radial position of the electron at
collapse need no longer be determined.

The final assumption is that the kinetic energy gained by the electron is primarily radial kinetic energy.
This simplifies determination of the electron velocity at the channel wall (section 2.2.2).

2.2.1 Transforming to first order

As equation (2.4) is an autonomous ODE (i.e. an ODE with no dependence on ⇠[10]), the following manip-
ulation can be made[9]:
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Using the chain rule on the left hand side of (2.9),

d
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◆
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where ⇢0 = d⇢/d⇠. Equation (2.10) can then be substituted into (2.4) and integrated, resulting in

1

2
⇢02 +

1

2�2
b

⇣!p

c

⌘2
·
✓
1

2
⇢2 � ln ⇢

◆
= C1, (2.11)

where C1 is a constant of integration to be determined.

2.2.2 Velocity Initial Condition

To find C1, one must know a value of ⇢0 for a given ⇢. At ⇠ = 0, an electron at the surface (⇢ = 1) sees the
attractive potential of the positron beam. As the electron is pulled to the axis, its energy will be converted
from potential energy between it and the beam to potential energy from the no longer neutral plasma. As
it recoils back towards the channel wall, the electron gains kinetic energy which will become maximised at
⇢ = 1 as, beyond ⇢ = 1, the force will be directed anti-parallel to the electron velocity. Therefore, the kinetic
energy of the electron at the channel wall (after the excitation from the beam) is e↵ectively equal to the
potential energy it has at (⇢, ⇠) = (1, 0) due to the positron beam under the assumptions given at the start
of this section.

By letting ⇢0(⇢ = 1) = ⇢00, i.e. some initial e↵ective velocity to be determined later, one arrives at an
equation for C1 after substitution into (2.11):

C1 = ⇢020 +
1

2�2
b

⇣!p

c

⌘2
. (2.12)

Determining ⇢00 requires consideration of the energy gained by the electron using the simplifying assump-
tions made in the introduction of this section. The potential energy of an electron due to a positron beam
is

U(⇢, ⇠) = �e2Nb

4⇡✏0

1p
⇢2r2ch + ⇠2

, (2.13)

where Nb = Q/e is the total number of positrons in the beam. Due to the conservative nature of the potential,
the kinetic energy E gained by a surface electron due to the positron beam, initially at ⇠ = 0, is

E = U(⇢1, ⇠1)� U(1, 0), (2.14)

where (⇢1, ⇠1) defines the position of the particle when its radial velocity is zero. If it is assumed that ⇠1 is
large, then U(⇢1, ⇠1) ⇡ 0 and equation (2.14) reduces to

E =
e2Nb

4⇡✏0rch
⇡ 1

2
meṙ

2
0, (2.15)

where ṙ0 = rchvb⇢00 is the initial condition velocity, vb is the beam velocity, and the final term on the right
hand side assumes that the energy gain occurs primarily in the radial direction. Rearranging equation (2.15)
yields

ṙ20 ⇡ e2nb

me✏0
· Vb

4⇡rch

= !2
pb ·

Vb

4⇡rch
, (2.16)
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By letting ⇢0(⇢ = 1) = ⇢00, i.e. some initial e↵ective velocity to be determined later, one arrives at an
equation for C1 after substitution into (2.11):

C1 = ⇢020 +
1

2�2
b

⇣!p

c

⌘2
. (2.12)

Determining ⇢00 requires consideration of the energy gained by the electron using the simplifying assump-
tions made in the introduction of this section. The potential energy of an electron due to a positron beam
is

U(⇢, ⇠) = �e2Nb

4⇡✏0

1p
⇢2r2ch + ⇠2

, (2.13)

where Nb = Q/e is the total number of positrons in the beam. Due to the conservative nature of the potential,
the kinetic energy E gained by a surface electron due to the positron beam, initially at ⇠ = 0, is

E = U(⇢1, ⇠1)� U(1, 0), (2.14)

where (⇢1, ⇠1) defines the position of the particle when its radial velocity is zero. If it is assumed that ⇠1 is
large, then U(⇢1, ⇠1) ⇡ 0 and equation (2.14) reduces to

E =
e2Nb

4⇡✏0rch
⇡ 1

2
meṙ

2
0, (2.15)

where ṙ0 = rchvb⇢00 is the initial condition velocity, vb is the beam velocity, and the final term on the right
hand side assumes that the energy gain occurs primarily in the radial direction. Rearranging equation (2.15)
yields

ṙ20 ⇡ e2nb

me✏0
· Vb

4⇡rch

= !2
pb ·

Vb

4⇡rch
, (2.16)
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where Nb = nbVb, Vb is the e↵ective volume of the beam, and nb is the beam density. For a Gaussian
beam distribution of width �r and length �z, nb is defined as the positron density at the beam’s centre with
Vb = �2

r�z

p
2⇡. Upon substituting ṙ0 = rchvb⇢00 into the above equation and rearranging, an approximate

form for ⇢00 is determined as

⇢00 ⇡ !pb

c
· 1

�br
3/2
ch

·
r

Vb

2⇡
(2.17)

and, for a Gaussian beam profile,

⇢00 ⇡ !pb

c
· 1

�br
3/2
ch

·

s
�2
r�zp
2⇡

. (2.18)

2.2.3 Radial Boundary Conditions and the Non-linearity parameter

Due to the oscillatory nature of the problem, it is clear that there will exist two solutions for ⇢ where ⇢0 = 0.
After substituting expressions for C1 and ⇢00, equation (2.11) reduces to

⇢2 � 2 ln ⇢ = 1 + 2
nb

np

Vb

2⇡r3ch
. (2.19)

Defining ↵ = 1 + 2 nb
np

Vb

2⇡r3ch
, equation (2.19) describes a transcendental equation with two solutions:

⇢+ =
p

�W�1(�e�↵) (2.20)

⇢� =
p

�W0(�e�↵) (2.21)

↵ = 1 + 2
nb

np

Vb

2⇡r3ch
(2.22)

⇣
= 1 + 2

nb

np

�2
r�zp
2⇡r3ch

, Gaussian Profile
⌘
, (2.23)

where W�1,0(x) are the decreasing and increasing branches of the lambert W function respectively. Each
solution respectively describes the amplitude of the crests and troughs of the plasma density oscillations.

Looking at the extreme cases for ↵,

⇢+ !
(
1 ↵ ! 1

1 ↵ ! 1
, (2.24a)

⇢� !
(
1 ↵ ! 1

0 ↵ ! 1
, (2.24b)

which suggests that, for large plasma densities and channel radii or physically small, low density beams,
|⇢+ � 1| ⇡ |⇢� � 1| yielding a linear wave. In the opposite case, the wave amplitudes are di↵erent and thus
the wave is non-linear. It is therefore deduced that ↵ must describe the strength of non-linearity of the wave,
and that increasing nb, �r, �z, or decreasing np or rch results in increased non-linearity.

Increasing the beam charge will correspond to a stronger driving potential experienced by the plasma
electrons. As a consequence, electrons have more energy to collapse closer to the axis. This is similar for the
channel radius; electrons will initially be closer to the driving beam and thus experience a stronger potential.
Conversely, decreasing the plasma density will reduce the number of plasma ions. This weakens the restoring
force experienced by the collapsed electrons, allowing them to collapse closer to the axis than for a denser
plasma.
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Using the chain rule on the left hand side of (2.9),

d

d⇠
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d⇢

d⇠

d

d⇢

=) ⇢00 =
d

d⇢

✓
1

2
⇢02

◆
, (2.10)

where ⇢0 = d⇢/d⇠. Equation (2.10) can then be substituted into (2.4) and integrated, resulting in

1

2
⇢02 +

1

2�2
b

⇣!p

c

⌘2
·
✓
1

2
⇢2 � ln ⇢

◆
= C1, (2.11)

where C1 is a constant of integration to be determined.
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where Nb = nbVb, Vb is the e↵ective volume of the beam, and nb is the beam density. For a Gaussian
beam distribution of width �r and length �z, nb is defined as the positron density at the beam’s centre with
Vb = �2
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2⇡. Upon substituting ṙ0 = rchvb⇢00 into the above equation and rearranging, an approximate

form for ⇢00 is determined as

⇢00 ⇡ !pb

c
· 1

�br
3/2
ch

·
r

Vb

2⇡
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which suggests that, for large plasma densities and channel radii or physically small, low density beams,
|⇢+ � 1| ⇡ |⇢� � 1| yielding a linear wave. In the opposite case, the wave amplitudes are di↵erent and thus
the wave is non-linear. It is therefore deduced that ↵ must describe the strength of non-linearity of the wave,
and that increasing nb, �r, �z, or decreasing np or rch results in increased non-linearity.

Increasing the beam charge will correspond to a stronger driving potential experienced by the plasma
electrons. As a consequence, electrons have more energy to collapse closer to the axis. This is similar for the
channel radius; electrons will initially be closer to the driving beam and thus experience a stronger potential.
Conversely, decreasing the plasma density will reduce the number of plasma ions. This weakens the restoring
force experienced by the collapsed electrons, allowing them to collapse closer to the axis than for a denser
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these fields approach the wave-breaking limit of the channel-wall electron density when the
channel radius is matched to the energy-source.

Hollow-channels with skin-depth scale tunable radius, that enable the “crunch-in” regime
with accessible acceleration lengths over several 10s of centimeter length have been proposed
using an ion-wake [3].

The distinction between previously explored hollow-channel regime and the “crunch-in”
regime can be inferred by comparing electron-beam driven simulation snapshots (e� den-
sity, plasma acc. field and focusing field) in Fig.1 (earlier hollow-channel regime) and Fig.2
(“crunch-in” regime).

It is known that the properties of hollow-channel wakefields are dictated by 2 independent
parameters:

1. hollow-channel radius, rch
2. channel-wall plasma-electron density, n0 or the plasma-electron frequency, !pe =

p
4⇡n0e2/me.

However, in this work it is shown that the energy-source intensity determines the prop-
erties of the hollow-channel wakefields in the “crunch-in” regime. Intensity is represented
with a0, the normalized vector potential for lasers and with nb, the beam density for particle-
beams.

2 Accessing the crunch-in regime

The previously analyzed linear-regime of hollow-channel wakefields operates under the as-
sumption in eq.1 for photon and particle-beam energy sources respectively:

w0 ' rch :
e

mec!pe

e

rerch

a20
2�e

⌧ 1

e

mec!pe

enb

r2ch

⇣⇡
2

⌘3/2
�2
r�z ⌧ 1

(1)

where, w0 is the laser focal spot-size, �r is the bunch spot-size and �z the bunch length.
Note, the choice of �r is not dictated by the channel radius, rch, unlike w0 for lasers.

The “crunch-in” regime requires two conditions which dictate the radial dynamics of
channel-edge electrons:
(a) the channel radius is small enough to allow on-axis collapse of the channel-edge electrons

within a spatial-scale (�r) of the order of a plasma (n0) wavelength, 2⇡c/!pe

(b) the energy-source is intense enough to drive the electrons to velocities (�r/ve) that
allow oscillations over the time-scales of the order of a plasma (n0) period, 2⇡!�1

pe

Thus, the condition for the excitation of the “crunch-in” regime for laser and particle-
beam respectively, are in eq.2:

RN ' a20
2�e

(kpw0 ' R)

RN ' nb

ne

�r
c/!pe

r
�z

c/!pe

1

2
p
2

⇣⇡
2

⌘1/4
(2)

where, RN = rch (c/!pe)
�1 leads to wave-breaking fields.
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2 Theory - Dynamics of the Plasma Electron

Classifying the onset of non-linearity and wavelength of the density oscillations both require understanding
of the electron dynamics within the plasma. The plasma considered is one of density 0 for r < rch and np for
r > rch. A positron driving beam of density nb and volume Vb – moving with velocity vbẑ = c�bẑ – perturbs
electrons within the plasma electrostatically. Subsequently, the plasma electrons oscillate freely in the radial
direction as a result of the electric field that has been set up due to the no longer quasineutral plasma.

This electric field is found using Gauss’ law,
‹

S
E · dS =

Qenc

✏0
, (2.1)

where S is a closed Gaussian surface, E is the electric field, dS is the surface area element of S, Qenc is the
total charge enclosed within S, and ✏0 = 8.85⇥ 10�12 Fm�1 is the permittivity of free space. As the plasma
is cylindrically symmetric, a cylinder of radius r and length l is used as the Gaussian surface S. dS can
therefore be simplified to dS = r d✓ dzr̂. Assuming the electric field to be purely radial, E = Er r̂, the left
hand side of Gauss’ law is simplified (after integrating) to 2⇡rlEr.

The enclosed charge is given by the integral of the ion charge density over the volume enclosed by S.
The ions within the plasma are of density np and e↵ective charge e = 1.60⇥ 10�19 C. As the plasma
density np is constant, the enclosed charge is given by the net volume of plasma within S multiplied by enp,
Qenc = enp⇡(r2 � r2ch)l. Gauss’ law thus gives the following form for the radial electric field set up by the
non-quasineutral plasma:

Er(r) =
enp

✏0
· 1

2r
(r2 � r2ch). (2.2)

As the electric field vanishes for r = rch, equation (2.2) describes the electric field for an electron situated
initially on the channel wall.

The force experienced by a given plasma electron is found by multiplying the electric field by �e, the
electronic charge. Finally, a transformation to the frame of the driving beam ⇠ = vbt � z is made. This
is to allow for direct comparisons to be made between the model and OSIRIS simulations (section 3). The
equation of motion is

me
d2r

d⇠2
+

1

c2�2
b

npe2

✏0
· 1

2r
(r2 � r2ch) = 0, (2.3)

where me = 9.11⇥ 10�31 kg is the electron mass. Defining the plasma frequency !p =
q

npe
2

me✏0
and ⇢ = r/rch,

equation (2.3) is rewritten as

d2⇢

d⇠2
+

1

2�2
b

⇣!p

c

⌘2
· 1
⇢
(⇢2 � 1) = 0. (2.4)

The above equation is a non-linear second order di↵erential equation and describes the natural oscillations
of a plasma electron about the channel wall. The lack of charge within the channel wall gives rise to an
asymmetry in these oscillations. Setting rch = 0 returns the standard simple harmonic oscillations seen in
homogeneous plasmas about a cylindrical axis[8].
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I2 = �
p
⇡ erf[

p
ln(rch/rch )] = 0. So, the expression is

�rch
p
⇡ (erf[

p
ln(rch/r)]) =

p
2C ⇠. When the sucked-

in plasma electrons collapse towards the axis, 1/r ! 1
and erf[1] ! 1. So, when the electrons have collapsed
to the axis over ⇠ = ⇠coll , the time-duration of collapse
is ⇠ |t=0 � ⇠coll = �rch

p
⇡
2

1p
C . We note that there is an

anomaly that exists in our problem formulation and the so-
lution because we have not taken into account another force
in our equations. This is the space-charge force of the com-
pressing electrons as they collapse to the axis and this force
balances the suck-in force of the positron beam. A more
careful study of this e�ect is beyond the scope of this paper.
This ⇠coll = rch

q
⇡

2C = c�b rch
p
⇡

!pe

q
nbp
n0

rpb

. Therefore,

tcoll =
p
⇡ rch

!pe

q
nbp
n0

rpb

.

Note that tcoll is the time dictated by the beam-properties
for the plasma electrons from the channel-radius to collapse
to the axis. It has to be matched to the longitudinal compres-
sion time. This matching is required to achieve the optimal
compression so that ideal longitudinal and transverse fields
are excited.

To verify the variation of the collapse time and the need
to match the channel radius to the time over which compres-
sion occurs we use PIC simulations to scan over a few beam
parameters and over a set of hollow-channel radius. The
results are shown in Fig.3 for positron beams with di�erent
density and waist parameters as shown in the labels. This is
not a comprehensive set of beam parameters so we cannot
compare it directly to the solution above. However compar-
ing the 3 curves we see that change in the beam radius has
a more significant e�ect than the beam-density as expected
from the solution above.

Figure 3: Positron-beam driven Longitudinal wakefields
vs hollow-plasma channel radius for di�erent beam
properties.

We next compare the properties of the positron-beam
(same beam parameters as in Fig.1) driven wakefields excited
in an ideal hollow-channel to an ion-wake channel which is

excited behind an electron-wakefield bubble-wake train [2].
In Fig.4 we show the longitudinal profile of the positron-
beam driven accelerating field in an ideal channel (blue)
vs in an ion-wake channel (green), both of radius 2.5 c

!pe
.

The ion-wake channel is initialized with an on-axis (5n0,
width=0.3 c

!pe
) and channel-edge (4n0, width=1.0 c

!pe
) den-

sity spikes. It is seen that the amplitude of the accelerating
field is reduced in an ion-wake channel by about half in this
case but the spatial profile is quite similar. Thus it might be
quite interesting to explore positron acceleration in the ion-
wake channel that is created by the bubble-shaped electron
wakefield train.

Figure 4: Positron-beam driven Longitudinal wakefields
- hollow-channel vs ion-wake channel. Hollow-channel
(blue) vs ion-wake channel (green) of channel radius,
2.5 c

!pe
.

DISCUSSION
We have shown that the positron beam-driven wakefields

in a hollow-channel plasma are useful for transporting and
accelerating positron beams in a controlled and reliable man-
ner in the non-linear density excitation compression regime.
Any collider-level acceleration technique has to be able to
support beams of various densities and radii corresponding
to di�erent stages of the accelerator. We have explored the
scaling of the hollow-channel properties with the positron-
beam parameters. We have also shown that ion-wake chan-
nels formed behind an electron-wakefield bubble-wake train
may be utilized instead of ideal hollow-channels for plasma-
based positron acceleration.
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FIG. 7: Radial phase-space snapshots of the electron and ion density in
Fig.2. (a) electron pr � r radial momentum phase-space showing the

accumulation of thermalized electrons within the ion-soliton. (b) ion pr � r
radial momentum phase-space showing the on-axis and ion-wake edge ion

accumulations.

VI. POSITRON ACCELERATION IN THE
ION-WAKE CHANNEL

Positron acceleration using the ion-wake channel is
explored in the non-linear suck-in regime of positron-
beam radii rpb > c/!pe and peak density npb > n0. In this
regime rpb � req

i , so the on-axis ion density has a radially
limited defocussing force.

It is well known [18] that in a homogeneous plasma
positron beam driven wakes have two major problems
[19] - (i) The plasma electrons collapsing to the axis un-
der the force of a positron beam start at di↵erent radii.
The positron beam radial force driving the “suck-in” de-
creases with the radii. As a result, the electron compres-
sion is not optimal. (ii) The plasma ions located in the
path of the positron beam result in a de-focussing force
on it. The transport of the positron in a positron-beam
driven wake in homogenous plasma is not ideal.

As the ion-wake channel is a practical realization of
the hypothesized ideal hollow-channel plasma [18] we
examine its excitation by a positron-beam [19]. In this
section we analyze whether the positron-beam driven

wake-fields excited in the ion-wake can be used for the
acceleration and transport of a positron beam.

We describe the analytical model of the radial electron
“suck-in” based excitation of a positron beam wake in the
plasma. The equation of motion of the plasma electron
rings at r from the axis, under the positron beam suck-in
force is

d2

d ⇠2 r / �
1
r

nbp(⇠)r2
bp(⇠) (6)

where ⇠ = c�pbt�z is the space just behind the positron
beam with velocity c�pb driving the collapse. This is
a non-linear second-order di↵erential equation of the
form,

r00 = f (r, r0, ⇠)

where f is not linear in r. Under the assumption about
the positron-beam properties, nbp(⇠) and rbp(⇠) being con-
stant during the entire interaction of the positron-beam
with the hollow-channel over its full length. So, upon
dropping the dependence on ⇠ the equation simplifies to
its special case which has analytical solutions, r00 = f (r, r0).
The solution to this equation is [19],

rch
p
⇡ erf

⇣p
ln(rch/r)

⌘
= �
p

2C ⇠ (7)

where C = 1
2⇡�2
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✓

rbp

c/!pe

◆2
. Therefore the collapse

time-duration is ⇠coll = �rch
p
⇡

2C . We note that there is
an anomaly that exists in our problem formulation and
the solution because we have not taken into account the
space-charge force of the compressing electrons as they
collapse to the axis and this force balances the suck-in
force of the positron beam. Under these approximations
the collapse time is

⌧c =
p
⇡

rch

!pe
p

nbp/n0rpb
(8)

Also, note that we have neglected the initial expan-
sion velocity of the channel, drch/dt)[18]. For optimal
compression avoiding phase-mixing, the electron rings
should collapse over, ⌧c ' D�Np/c where �Np is the non-
linear wavelength of the positron-driven wake and D
is the duty-cycle of compression phase. So, the optimal
channel radius is ropt

ch ' 2
p
⇡D

�Np

�pe

!pb

!pe
rpb. The scaling of

the ropt
ch with positron beam parameters is show in [19].

Using 2- 1
2 D PIC simulations in a moving window we

study the positron beam driven wakefields in cylindrical
geometry. We compare positron acceleration in an ideal
(Heaviside density function, n0H(r � rch)) and an ion-
wake channels (on-axis and channel-edge density-spike,
channel minimum density of 0.1n0) with rch = 2.5 c/!pe.
For non-linear wake parameters rpb = 2.3c/!pe, npb =
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Using 2- 1
2 D PIC simulations in a moving window we

study the positron beam driven wakefields in cylindrical
geometry. We compare positron acceleration in an ideal
(Heaviside density function, n0H(r � rch)) and an ion-
wake channels (on-axis and channel-edge density-spike,
channel minimum density of 0.1n0) with rch = 2.5 c/!pe.
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1 <M < 1.6, vi < 1.6 cs

� <
M2

max

2
= 1.28 (4)

As will be shown later, we find from simulations that
the Mach number calculated using the mean tempera-
ture is well within these bounds and thus the soliton is
stable.

IV. NON-LINEAR ION-WAKE MODEL:
ION-SOLITON EXCITATION PHASE

Since the characteristic time of ion-motion is much
longer than the electron oscillations, the longitudinal
field Ewk · ẑ averages out over the full bubble electron
oscillation. So, the ions do not gain any net longitudi-
nal momentum. However, atypical radial ion-dynamics
arise because the radial fields, Ewk · r̂ are asymmetric in
time as shown in Fig.5 and do not average to zero, driv-
ing an average radial ion-momentum.

FIG. 5: Ion dynamics in longitudinally asymmetric phases of the radial
forces in an electron bubble. (a) electron density of a bubble in 2D cylindrical

real-space. (b) longitudinal on-axis profile of the electron density (black),
longitudinal field (blue), focusing field (red). (c) radial-field profile close to the
back of the bubble. This is the focussing “suck-in” phase for the ions. (d) the

fields at the center of the ion-cavity of the bubble. This is the defocussing
“push-out” phase for the ions.

The first stage of the ion-wake formation is controlled
by the di↵erent time-asymmetric phases in Fig.5 of the
bubble radial impulses namely, “suck-in” due to the elec-
tron compression in the back of the bubble Fback dur-
ing ⌧back shown in Fig.5(c), and the “push-out” due to
the mutual-ion space-charge Coulomb repulsion force
Fsc during ⌧cav shown in Fig.5(d). The suck-in force
is spatially-periodic at non-linear plasma wavelength,
�Np ⇡ 2RB with a duty-cycle D = ⌧back

⌧back+⌧cav
⌧ 1. In addi-

tion to the plasma wake, the propagating energy sources

themselves impart impulses such as the laser pondero-
motive force Fpm⌧las where Fpm

e (r, z) = �mec2

2�e
rr,z|a(r)|2 and

the radial force of the drive beam Fb⌧b where Fb(r) =
�2⇡e2nbr. We neglect the driver impulses (below thresh-
old intensity for direct non-linear ion excitation [9][10]))
because they act on the ions over their sub-wavelength
short duration. This is unlike the slowly-propagating
wake-plasmon bubbles that undergo continual interac-
tion over many plasma periods. The validity of this
assumption is evident from the laser ion-wake in Fig.1.
Since the ponderomotive force of a laser driver is an out-
ward force for both the electrons and ions, the on-axis
density-spike cannot be from this force. Similarly the
ion-density-spike at the radial wake-edge in an electron
beam driven ion-motion cannot be excited directly by the
force of the beam, and is caused by the electron wake’s
radial-edge density compression.

The Lagrangian fluid model of the ions in a bub-
ble consists of ion-rings under cylindrical symmetry
with mid2ri/dt2 = ⌃Fwk. The bared-ion region inside
the bubble is assumed to be a positively charged cylin-
der under steady-state approximation (RB > rBe, back
of the bubble electron compression radius). The force
on the ions from the non-linear electron compression
�ne = nBe � n0 in the back of the bubble and radius
rBe, pulls the ion rings inward; and within the bub-
ble, the space-charge force of the ions opposes it and
prevents full collapse. The “suck-in” force on ions is
Fback = �Zi2⇡e2nBe

r2
Be
ri

. The space-charge force on the
ions in the cavity is Fsc = Zi2⇡e2n0ri. The equation of
motion is mid2ri/dt2 �

c��
�Np

(Fsc⌧cav � Fback⌧back) = 0 using,
!2

pi = Zi 4⇡e2n0/mi, we have,

d2ri

dt2 + ��
!2

pi

2

0
BBBB@

nBe

n0

⌧back

⌧cav

r2
Be

r2
i

� 1

1
CCCCA ri = 0 (5)

where we have assumed that c⌧cav/�Np ' 1. Therefore
the equilibrium radius where the impulses balance out

is req
i = rBe

q
nBe
n0
D. The ion-rings at ri  req

i collapse
inwards towards the axis resulting in an on-axis density
spike. Whereas the ion-rings at ri � req

i move out away
from the axis. For mi/Zi > mp the ion-response is slower
but similar.

When the radially outward moving ion-rings reach
beyond RB, there is excess net negative charge of the
wake electrons within the bubble-sheath. As a result
the radially propagating ion rings get trapped and start
accumulating just inside the bubble and cannot freely
move beyond, forming a density compression at RB. So,
the cylindrical ion soliton is formed around RB. This is
seen in Fig.1 and Fig.2 where the ion and electron density
peak at RB.

In the non-linear regime RB � c/!pe, the spatial-scale
of the ion-wake is over several c/!pe. This is due to the
balance between the opposite radial forces on the elec-HIGHEST

longitudinal 
fields

EWB (n0 ~ 1022 cm-3) ~ [few] TVm-1

c/ωp ~ 100s of nm
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plasma parameters given in Fig. 2. The electron bunch
carries out betatron oscillations in the transverse direction.
The modulation period of the microbunch structure de-
creases with the propagation distance. The reason for the
microbunch generation is the nonuniform radial wakefield
along the longitudinal direction within the bunch. The
electron bunch can be considered as a set of infinitely
thin sheets along the x direction. If the radial field is
uniform along the x direction, the radius of each sheet
oscillates synchronously with the same betatron frequency.
For our case, the wakefield is weak towards the bunch head
and is strong toward its tail. The different sheets therefore
have different betatron frequencies and the resulting non-
synchronous oscillations lead to the bunch envelope
modulation.

Since the beam deceleration works near the blow-out
regime, we assume that electron bunch blows out all the
plasma electrons, and leaves a positive ion column. The
transverse electrostatic field of the ion column is 2!neer,
and the electron motion in this transverse field satisfies
dpT=dt ¼ "2!nee

2r. For relativistic electrons, we have

"T ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" v2

T

q
# ", and the equation of electron mo-

tion becomes

d2r=dt2 ¼ "!2
br; (9)

where !b ¼ !pe=
ffiffiffiffiffiffi
2"

p
is the betatron frequency. Since a

relativistic electron has t ’ x=c, the motion equation can
be rewritten as d2r=dx2 þ ð!2

b=c
2Þr ¼ 0, where x is the

electron propagation coordinate.
If we neglect the effects of emittance, space charge, and

self-magnetic field of the electron bunch, we can obtain
from Eq. (9) the envelope equation of the bunch [27,28] as

"
@2

@x2
þ!2

bð#Þ
c2

#
$Tðx;#Þ ¼ 0; (10)

where # ¼ x" ct is the comoving coordinate of the bunch.
We consider the front part of electron bunch within # 2
½"$0

L; 0(, where $0
L ) $L. We assume the radial field

increases linearly from the bunch head # ¼ 0 to the posi-
tion # ¼ "$0

L, so one has

!bð#Þ ¼ !b0ð1þ #=$0
LÞ; (11)

where !b0 ¼ !pe=
ffiffiffiffiffiffi
2"

p
is the maximum betatron fre-

quency. The solution of Eq. (10) is

$Tðx;#Þ ¼ $Tð0;#Þj cos½!b0ð1þ #=$0
LÞx=c(j: (12)

The modulation period of the bunch envelope as a function
of # is

% ¼ !c$0
L

!b0x
¼

ffiffiffiffi
"

2

r
$0

L

x
&pe; (13)

which decreases with the propagation distance x. For the
case of Fig. 5, we find $0

L * 0:5&pe. Substituting " ¼
1000 and &pe ¼ 5 'm, we obtain %0:5 mm * 0:56 'm
and %0:8 mm * 0:35 'm, which agree with the median in
Fig. 5(c). The chirped structure in Fig. 5(c) is due to the
nonlinear wakefield rising within the bunch.
Such a microstructured electron bunch can potentially

be a source for coherent radiation or can feed a free
electron laser, and its generation requires only a short
plasma insertion. Of course, additional investigations on
optimum microbunch generation are needed for a practical
application in this direction. We notice that there remains
some chirp in the period of the microbunches. Since we
understand the reason for this in the nonlinear chirp of the
betatron frequency, we can utilize this or control it. It may
also be possible to use this new microbunching mechanism
to generate trains of zeptosecond electron pulses from an
attosecond bunch, as described in Ref. [22]. Such zepto-
second pulse trains can be used as diagnostics tool for
resolving ultrafast phenomena in atomic and nuclear
physics.

V. CONCLUSION

In conclusion we have suggested to make use of collec-
tive deceleration in plasma as a beam dump mechanism for
electron accelerators. This new method provides a beam
dump capability that is some 3–5 orders of magnitude more
efficient than a conventional beam dump. It reduces the
radioactivation hazard by many orders of magnitude. It

FIG. 5. Microbunching during deceleration. Snapshots of bunch density for the propagation distances (a) x ¼ 0:5 mm and
(b) x ¼ 0:8 mm. (c) Display of bunch density distributions along the dashed lines in (a) and (b). Simulation parameters are the
same as in Fig. 2.
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nonlinear wakefield rising within the bunch.
Such a microstructured electron bunch can potentially

be a source for coherent radiation or can feed a free
electron laser, and its generation requires only a short
plasma insertion. Of course, additional investigations on
optimum microbunch generation are needed for a practical
application in this direction. We notice that there remains
some chirp in the period of the microbunches. Since we
understand the reason for this in the nonlinear chirp of the
betatron frequency, we can utilize this or control it. It may
also be possible to use this new microbunching mechanism
to generate trains of zeptosecond electron pulses from an
attosecond bunch, as described in Ref. [22]. Such zepto-
second pulse trains can be used as diagnostics tool for
resolving ultrafast phenomena in atomic and nuclear
physics.

V. CONCLUSION

In conclusion we have suggested to make use of collec-
tive deceleration in plasma as a beam dump mechanism for
electron accelerators. This new method provides a beam
dump capability that is some 3–5 orders of magnitude more
efficient than a conventional beam dump. It reduces the
radioactivation hazard by many orders of magnitude. It
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The initial particle energy E0 is varied from 100 MeV to
100 GeV.

It is seen that the bunch energy drops linearly with
distance. Apparently, the stopping power is independent
of the initial particle energy in this region, until some kind
of saturation sets in after a saturation length Ls. The
deceleration distance is proportional to the bunch energy
and is in fact determined by the stopping power given in
Eq. (5), i.e., the wakefield amplitude is independent of the
bunch energy. For a bunch of 1 GeV electrons initially,
75% of the energy is deposited in a plasma column 1.5 mm
long. Beyond the saturation length, the electron decelera-
tion becomes much slower and almost vanishes.

In order to better understand the saturation mechanism,
Fig. 2 provides the distribution of energy vs the x position
of all electrons in the bunch around the distance Ls. Here
we take the initial bunch energy of 500 MeVand a plasma
density of ne ¼ 2nb " 4:4# 1019 cm$3. In this case, the
normalized bunch sizes are !T="pe ¼ !L="pe ¼ 0:6.
Figure 2(a) shows that the bunch tail is effectively decel-
erated and, in Fig. 2(b), some tail electrons are completely
stopped toward zero velocity and lag behind the main
bunch. Then, these lagging electrons are trapped in the
acceleration phase of the wakefield and regain energy, as
shown in Fig. 2(c). In fact, the bunch is already split into
three parts: electrons at the bunch front that feel almost no
deceleration field, electrons in the middle still decelerating,
and electrons at the tail already regaining energy. It is at
this point when the overall deceleration saturates. The total
energy evolution is shown in Fig. 3(b) for the case of the
uniform plasma. The remaining energy after saturation is
about 25%.

B. Beam dump with structured plasmas

In order to circumvent saturation in a uniform plasma
and to further decelerate the bunch, we suggest to employ a
structured plasma for phase mismatch control [26], as it is
shown in Figs. 3(a) and 4(a). Just before the moment when
some tail electrons are completely stopped, we replace the
uniform plasma by some periodic plasma slabs with vac-

uum gaps or periodic thin foils inserted in the background
uniform plasma. It is expected that those electrons which
approach to come to rest can be retained around the vac-
uum gap or the foil, so that they are not trapped in the
plasma for renewed acceleration.
In the case with vacuum gap, we set the thickness of the

plasma slab equal to the vacuum gap. Figure 3(b) shows
that, after a deceleration in the 1.15 mm long uniform
plasma, the bunch energy can indeed further decelerate
when introducing plasma slabs with either LP="pe ¼ 2, 5,
or 10 periods. After a distance of 3 mm, 90% bunch energy
is absorbed. Further deceleration is possible if more plasma
slabs are used.
As expected, Fig. 3(c) shows that only a low-energy

electron tail is left after the main bunch. Most of these
low-energy electrons have a kinetic energy smaller than
5 MeV. Electrons with energy less than 10 MeV are safer
because they do not lead to radioactivation. Only the bunch
head cannot effectively be decelerated, because the wake-
field is weak on the bunch head.
To check the robustness of deceleration in the structured

plasma, we consider an electron bunch after a 1 cm vacuum
drift, in which the transverse size becomes !T ¼ 10 #m,
while the longitudinal length of !L ¼ 3 #m does not
change. The bunch density is nb " 2# 1018 cm$3. We
vary the plasma density from ne=nb ¼ 1 to ne=nb ¼ 80.
The corresponding normalized bunch length varies from
!L="pe ¼ 0:13 to !L="pe ¼ 1:2 and the bunch width
from !T="pe ¼ 0:4 to !T="pe ¼ 3:8. For the case of a
uniform plasma shown in Fig. 3(d), the rate of energy loss
decreases for !L="pe > 1. This is because the bunch is too
long for the wakefield, having a length of %"pe. In this
case, the bunch tail is always reaccelerated [15]. The
optimal wakefield is generated for !L="pe ¼ 0:5. In other
words, the proposed beam dump is effective when

!L="pe < 1: (8)

This implies that (i) the shorter the bunch is, the higher
the plasma density can be taken and the shorter becomes
the stopping length [see Eq. (5)], and that (ii) the denser

FIG. 2. Electron energy distribution during collective deceleration in nonstructured plasma. Energies are given versus longitudinal
position (x in units of plasma wavelength) at different propagating distances: (a) x ¼ 1 mm, (b) x ¼ 1:25 mm, and (c) x ¼ 1:4 mm.
The plasma density is ne ¼ 2nb " 4:4# 1019 cm$3, and the initial energy of bunch electrons is 500 MeV.
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The initial particle energy E0 is varied from 100 MeV to
100 GeV.

It is seen that the bunch energy drops linearly with
distance. Apparently, the stopping power is independent
of the initial particle energy in this region, until some kind
of saturation sets in after a saturation length Ls. The
deceleration distance is proportional to the bunch energy
and is in fact determined by the stopping power given in
Eq. (5), i.e., the wakefield amplitude is independent of the
bunch energy. For a bunch of 1 GeV electrons initially,
75% of the energy is deposited in a plasma column 1.5 mm
long. Beyond the saturation length, the electron decelera-
tion becomes much slower and almost vanishes.

In order to better understand the saturation mechanism,
Fig. 2 provides the distribution of energy vs the x position
of all electrons in the bunch around the distance Ls. Here
we take the initial bunch energy of 500 MeVand a plasma
density of ne ¼ 2nb " 4:4# 1019 cm$3. In this case, the
normalized bunch sizes are !T="pe ¼ !L="pe ¼ 0:6.
Figure 2(a) shows that the bunch tail is effectively decel-
erated and, in Fig. 2(b), some tail electrons are completely
stopped toward zero velocity and lag behind the main
bunch. Then, these lagging electrons are trapped in the
acceleration phase of the wakefield and regain energy, as
shown in Fig. 2(c). In fact, the bunch is already split into
three parts: electrons at the bunch front that feel almost no
deceleration field, electrons in the middle still decelerating,
and electrons at the tail already regaining energy. It is at
this point when the overall deceleration saturates. The total
energy evolution is shown in Fig. 3(b) for the case of the
uniform plasma. The remaining energy after saturation is
about 25%.

B. Beam dump with structured plasmas

In order to circumvent saturation in a uniform plasma
and to further decelerate the bunch, we suggest to employ a
structured plasma for phase mismatch control [26], as it is
shown in Figs. 3(a) and 4(a). Just before the moment when
some tail electrons are completely stopped, we replace the
uniform plasma by some periodic plasma slabs with vac-

uum gaps or periodic thin foils inserted in the background
uniform plasma. It is expected that those electrons which
approach to come to rest can be retained around the vac-
uum gap or the foil, so that they are not trapped in the
plasma for renewed acceleration.
In the case with vacuum gap, we set the thickness of the

plasma slab equal to the vacuum gap. Figure 3(b) shows
that, after a deceleration in the 1.15 mm long uniform
plasma, the bunch energy can indeed further decelerate
when introducing plasma slabs with either LP="pe ¼ 2, 5,
or 10 periods. After a distance of 3 mm, 90% bunch energy
is absorbed. Further deceleration is possible if more plasma
slabs are used.
As expected, Fig. 3(c) shows that only a low-energy

electron tail is left after the main bunch. Most of these
low-energy electrons have a kinetic energy smaller than
5 MeV. Electrons with energy less than 10 MeV are safer
because they do not lead to radioactivation. Only the bunch
head cannot effectively be decelerated, because the wake-
field is weak on the bunch head.
To check the robustness of deceleration in the structured

plasma, we consider an electron bunch after a 1 cm vacuum
drift, in which the transverse size becomes !T ¼ 10 #m,
while the longitudinal length of !L ¼ 3 #m does not
change. The bunch density is nb " 2# 1018 cm$3. We
vary the plasma density from ne=nb ¼ 1 to ne=nb ¼ 80.
The corresponding normalized bunch length varies from
!L="pe ¼ 0:13 to !L="pe ¼ 1:2 and the bunch width
from !T="pe ¼ 0:4 to !T="pe ¼ 3:8. For the case of a
uniform plasma shown in Fig. 3(d), the rate of energy loss
decreases for !L="pe > 1. This is because the bunch is too
long for the wakefield, having a length of %"pe. In this
case, the bunch tail is always reaccelerated [15]. The
optimal wakefield is generated for !L="pe ¼ 0:5. In other
words, the proposed beam dump is effective when

!L="pe < 1: (8)

This implies that (i) the shorter the bunch is, the higher
the plasma density can be taken and the shorter becomes
the stopping length [see Eq. (5)], and that (ii) the denser

FIG. 2. Electron energy distribution during collective deceleration in nonstructured plasma. Energies are given versus longitudinal
position (x in units of plasma wavelength) at different propagating distances: (a) x ¼ 1 mm, (b) x ¼ 1:25 mm, and (c) x ¼ 1:4 mm.
The plasma density is ne ¼ 2nb " 4:4# 1019 cm$3, and the initial energy of bunch electrons is 500 MeV.
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plasma parameters given in Fig. 2. The electron bunch
carries out betatron oscillations in the transverse direction.
The modulation period of the microbunch structure de-
creases with the propagation distance. The reason for the
microbunch generation is the nonuniform radial wakefield
along the longitudinal direction within the bunch. The
electron bunch can be considered as a set of infinitely
thin sheets along the x direction. If the radial field is
uniform along the x direction, the radius of each sheet
oscillates synchronously with the same betatron frequency.
For our case, the wakefield is weak towards the bunch head
and is strong toward its tail. The different sheets therefore
have different betatron frequencies and the resulting non-
synchronous oscillations lead to the bunch envelope
modulation.

Since the beam deceleration works near the blow-out
regime, we assume that electron bunch blows out all the
plasma electrons, and leaves a positive ion column. The
transverse electrostatic field of the ion column is 2!neer,
and the electron motion in this transverse field satisfies
dpT=dt ¼ "2!nee

2r. For relativistic electrons, we have

"T ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" v2

T

q
# ", and the equation of electron mo-

tion becomes

d2r=dt2 ¼ "!2
br; (9)

where !b ¼ !pe=
ffiffiffiffiffiffi
2"

p
is the betatron frequency. Since a

relativistic electron has t ’ x=c, the motion equation can
be rewritten as d2r=dx2 þ ð!2

b=c
2Þr ¼ 0, where x is the

electron propagation coordinate.
If we neglect the effects of emittance, space charge, and

self-magnetic field of the electron bunch, we can obtain
from Eq. (9) the envelope equation of the bunch [27,28] as

"
@2

@x2
þ!2

bð#Þ
c2

#
$Tðx;#Þ ¼ 0; (10)

where # ¼ x" ct is the comoving coordinate of the bunch.
We consider the front part of electron bunch within # 2
½"$0

L; 0(, where $0
L ) $L. We assume the radial field

increases linearly from the bunch head # ¼ 0 to the posi-
tion # ¼ "$0

L, so one has

!bð#Þ ¼ !b0ð1þ #=$0
LÞ; (11)

where !b0 ¼ !pe=
ffiffiffiffiffiffi
2"

p
is the maximum betatron fre-

quency. The solution of Eq. (10) is

$Tðx;#Þ ¼ $Tð0;#Þj cos½!b0ð1þ #=$0
LÞx=c(j: (12)

The modulation period of the bunch envelope as a function
of # is

% ¼ !c$0
L

!b0x
¼

ffiffiffiffi
"

2

r
$0

L

x
&pe; (13)

which decreases with the propagation distance x. For the
case of Fig. 5, we find $0

L * 0:5&pe. Substituting " ¼
1000 and &pe ¼ 5 'm, we obtain %0:5 mm * 0:56 'm
and %0:8 mm * 0:35 'm, which agree with the median in
Fig. 5(c). The chirped structure in Fig. 5(c) is due to the
nonlinear wakefield rising within the bunch.
Such a microstructured electron bunch can potentially

be a source for coherent radiation or can feed a free
electron laser, and its generation requires only a short
plasma insertion. Of course, additional investigations on
optimum microbunch generation are needed for a practical
application in this direction. We notice that there remains
some chirp in the period of the microbunches. Since we
understand the reason for this in the nonlinear chirp of the
betatron frequency, we can utilize this or control it. It may
also be possible to use this new microbunching mechanism
to generate trains of zeptosecond electron pulses from an
attosecond bunch, as described in Ref. [22]. Such zepto-
second pulse trains can be used as diagnostics tool for
resolving ultrafast phenomena in atomic and nuclear
physics.

V. CONCLUSION

In conclusion we have suggested to make use of collec-
tive deceleration in plasma as a beam dump mechanism for
electron accelerators. This new method provides a beam
dump capability that is some 3–5 orders of magnitude more
efficient than a conventional beam dump. It reduces the
radioactivation hazard by many orders of magnitude. It

FIG. 5. Microbunching during deceleration. Snapshots of bunch density for the propagation distances (a) x ¼ 0:5 mm and
(b) x ¼ 0:8 mm. (c) Display of bunch density distributions along the dashed lines in (a) and (b). Simulation parameters are the
same as in Fig. 2.
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creases with the propagation distance. The reason for the
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electron propagation coordinate.
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which decreases with the propagation distance x. For the
case of Fig. 5, we find $0

L * 0:5&pe. Substituting " ¼
1000 and &pe ¼ 5 'm, we obtain %0:5 mm * 0:56 'm
and %0:8 mm * 0:35 'm, which agree with the median in
Fig. 5(c). The chirped structure in Fig. 5(c) is due to the
nonlinear wakefield rising within the bunch.
Such a microstructured electron bunch can potentially

be a source for coherent radiation or can feed a free
electron laser, and its generation requires only a short
plasma insertion. Of course, additional investigations on
optimum microbunch generation are needed for a practical
application in this direction. We notice that there remains
some chirp in the period of the microbunches. Since we
understand the reason for this in the nonlinear chirp of the
betatron frequency, we can utilize this or control it. It may
also be possible to use this new microbunching mechanism
to generate trains of zeptosecond electron pulses from an
attosecond bunch, as described in Ref. [22]. Such zepto-
second pulse trains can be used as diagnostics tool for
resolving ultrafast phenomena in atomic and nuclear
physics.

V. CONCLUSION

In conclusion we have suggested to make use of collec-
tive deceleration in plasma as a beam dump mechanism for
electron accelerators. This new method provides a beam
dump capability that is some 3–5 orders of magnitude more
efficient than a conventional beam dump. It reduces the
radioactivation hazard by many orders of magnitude. It

FIG. 5. Microbunching during deceleration. Snapshots of bunch density for the propagation distances (a) x ¼ 0:5 mm and
(b) x ¼ 0:8 mm. (c) Display of bunch density distributions along the dashed lines in (a) and (b). Simulation parameters are the
same as in Fig. 2.

WU et al. Phys. Rev. ST Accel. Beams 13, 101303 (2010)

101303-6

beam micro-bunching – beam-plasma interactions



~ 1 
cm

~ 2 
cm

bunch-length – !r = 50 um, !z /c = 100 fs, Q = 100 pC, n0 = 1e16 cm-3

growing spatial freq.



Laser Muon Acc. – ultrashort bunches

aakash.sahai@gmail.com

 

Quasimonoenergetic laser plasma positron accelerator
using particle-shower plasma-wave interactions
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An all-optical centimeter-scale laser-plasma positron accelerator is modeled to produce quasimonoe-
nergetic beams with tunable ultrarelativistic energies. A new principle elucidated here describes the
trapping of divergent positrons that are part of a laser-driven electromagnetic particle-shower with a large
energy spread and their acceleration into a quasimonoenergetic positron beam in a laser-driven plasma
wave. Proof of this principle using analysis and particle-in-cell simulations demonstrates that, under limits
defined here, existing lasers can accelerate hundreds of MeV pC quasi-monoenergetic positron bunches.
By providing an affordable alternative to kilometer-scale radio-frequency accelerators, this compact
positron accelerator opens up new avenues of research.
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Monoenergetic positron accelerators intrinsic to positron-
electron (eþ − e−) colliders at energy frontiers [1,2] have
been fundamental to many important discoveries
[3–6] that underpin the standard model. Apart from high-
energy physics (HEP), monoenergetic eþ-beams of mostly
sub-MeV energies are also used in many areas of material
science [7,8], medicine [9] and applied antimatter physics
[10]. Applications have however not had ready access to
positron accelerators and have had to rely on alternative
sources such as βþ-decay [11], (p,n) reaction [12] and pair-
production [13] of MeV-scale photons from—fission
reactors [14], neutron-capture reactions [15] or MeV-scale
e−-beams impinging on a high-Z target [16].
Positron accelerators have evidently been scarce due to

complexities involved in the production and isolation of
elusive particles like positrons [2,16] in addition to the
costs associated with the large size of radio-frequency (rf)
accelerators [17]. The size of conventional rf accelerators
is dictated by the distance over which charged particles
gain energy under the action of breakdown limited [18]
tens of MVm−1 rf fields sustained using metallic structures
that reconfigure transverse electromagnetic waves into
modes with axial fields. This limit also complicates
efficient positron production [2,13], which has required a
multi-GeV e−-beam from a kilometer-scale rf accelerator
[17] to interact with a target. Furthermore, the positrons

thus produced have to be captured in a flux concentrator,
turned around and transported back [19] for reinjection into
the same rf accelerator.
Advancements in rf technologies have demonstrated

100 MVm−1-scale fields [20] but explorations beyond the
standard model at TeV-scale eþ − e− center-of-mass ener-
gies still remain unviable. Moreover, the progress of non-
HEP applications of eþ-beams has been largely stagnant.
Recent efforts on compact and affordable positron accel-

erator design based on advanced acceleration techniques
[21,22] have unfortunately been unsatisfactory. Production
of eþ − e− showers using high-energy electrons from

FIG. 1. Schematic of all-optical centimeter-scale schemes of
quasimonoenergetic laser-plasma positron accelerator using the
interaction of eþ − e− showers with plasma-waves.
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