Ledge Effect Identification

Carlos Sarasty (University of Cincinnati) Wenqiang Gu (BNL) Zeyuan Yu (BNL)

1/23/2018

Example of the abnormal waveform

- Left: Ledge Effect, reported by Tom Junk on 9/18, see
 <u>https://indico.fnal.gov/event/16526/session/34/contribution/82/material/slides/0.pdf</u> (page 25)
- In the ledge region, the noise level seems to be reduced
- While not for the region before the ledge such as in uBooNE (preamp saturation)

Adjacent channels of "ledge"

ticks

6000

ticks

Example of ledge in pulser data

- A suppression of pulser signal is also observed
- The larger the primary charge is, the shorter delay time

Two baseline configurations

The FE ASIC baseline is programmable

- 200 mV: a lot of waveforms with ledge effect were identified, this configuration can be used to study the characteristics of the ledge effect
- 900 mV: The value of the baseline was changed since run 5177, the ledge effect is significantly suppressed

Characteristic of the ledge effect

- Close to the baseline
- Sharp edges
- Continuously decreasing (τ ~ 100 μs)
- Relative small noise

Based on data with 200mV FE baseline

- The ledge duration has a mean decay time of 110 µs *
- The duration of the ledge has a wide distribution *

3000

Based on data with 200mV FE baseline

- The ledge has a mean height of ~80 ADC
- The mean time from the main pulse to the ledge is about 175 μs

Identification of the ledge

Step 1

- Rebin the waveform x5
 - The ledge has small fluctuations (<2 ADC compared to 4 ADC in normal regions)
 - A x5 rebin can reduce the fluctuations to less than 1 ADC in the ledge region
- Step 2
 - Find a continuously decreasing region with at least 20 bins (100 ticks) in the rebinned waveform
 - If the i-th bin is accidentally larger than the i-1 bin and if the i+1 bin is smaller the i-1 bin, ignore the i-th bin

Identification of the ledge

Step 3

- Find the start sharp edge.
 - Three ticks with continuously increasing ADC
 - The average slope is larger than 3.5 ADC/tick
- Step 4
 - Compare the ledge start with the baseline
 - If larger than 200 ADC, not a ledge
- Step 5
 - Test the decay time
 - if shorter than ~50 µs won't be tagged as a ledge

Identification efficiency and occupancy

- Efficiency (using 5 events from run 5141)
 - > 58 waveforms with ledge effect were manually selected
 - The algorithm was able to identify 52 waveforms
 - ➢ We can claim an efficiency of ~90%
- Occupancy

	200 mV baseline	900 mV baseline
APA 3	227 in 49 events ~0.17%	1 in 90 event ~4.1e-6
Other 5 APAs	423 in 49 events ~ 0.07%	17 in 90 events ~1.4e-5

examples of waveforms not identified by the code

Identification of the "plateau"

- As the baseline is raised, more chance to saturate ADC
- It seems to be due to a saturation of the ADC
- Step 1
 - Find a large signal (~2000 ADC above baseline)
- Step 2
 - After a large signal find a flat region of about 20 ticks (50 ADC maximum fluctuation)

Summary

- The efficiency of the ledge effect identification is calculated to be ~90%
- The ledge effect occupancy is given for the 2 different configuration of the FE baseline
- The 900 mV FE baseline configuration significantly suppresses the ledge effect
- Thanks CE experts (Veljko, Matt, Huchen, Shanshan) for very helpful discussion
- Comments and Suggestions are more than welcome. Thanks!