Calorimeters

Showers & Detectors,
Signal Treatment & Commissioning,

Calibration & Reconstruction

Thanks to M. Shapiro, B. Heinemann, N. Hadley, J. Stark, all speakers of CALOR
2006/2008, “Calorimetry for particle physics” C. Fabjan, F. Gianotti - 2003



showers & detectors

« Electron, photons leave em showers in a calorimeter:

They are compact:
 the shower maximum is at ~6X, longitudinally contained in ~25 X,,
« laterally contained to 90% in 1 Ry, > 99% in 3 R,

Measured in homogeneous (crystal) or sampling calorimeters

* homogenous calorimeter have an excellent intrinsic resolution, but larger non-
uniformities, no longitudinal segmentation

« Sampling calorimeters use either scintillator or lig. Argon as active material,
and Pb or Ur as absorber: fine segmentation, large variety of design
« Intrinsic resolutions 3-20%/\E

« Hadrons produce showers, where the energy contributes

20-30% hadronic cascade
30-60% electromagnetic cascade

20-30% of the initial energy is lost in slow nuclear interactions, with large
fluctuations

Intrinsic resolution: 50%-100%/\E
Hadronic calorimeters complete the em-sections: shower max at ~2A
Sampling calorimeters which have to be solid, robust and rather cheap
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Signal treatment & commissioning

 Testbeams are a very important tool:
— Validate R&D of new detectors
— To determine response of the detector to different particle types
— To test and calibrate modules of the final detector

* Online calibration allows to characterize the electonics:
— Noise suppresion
— Linearity and Uniformity
— Powerful tool for commissioning

« Cosmic muons are often the first particles seen by the full
detector!

— Allow to debug the interplay between different subdetecors
— Give a first “in situ” calibration
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Calibration & Reconstruction

« Showers & Detectors
— Generalities
— EM Calorimeters
— Hadronic Calorimeters

« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning
« (Calibration & Reconstruction
— Cell level calibration
— Electrons/photons
— Jets
— E-flow
— Simulation

HCP School 8/12/2008 Ursula Bassler - Irfu/SPP CEA Saclay 4



Why calibrate?

 How to know the energy of the incident particle from ADC counts?
— “Absolute calibration”
— Data/MC comparisons
« How to improve the resolution?
— Is the response linear?
— Is the response uniform?
— Is the response stable?
= Online calibration
— Measurement of electronics noise
— Monitoring of calorimeter response
= Test Beam
— Test of prototypes
— Calibration of final modules
— Measurement of ADC/GeV conversion factors
— Measurement of e/n
= Offline calibration
— Cell level @ intercalibration
— Clustering
— Hadronic reweighting
— Calibration with “physics objects”: electrons, jets

Know the reconstructed energies at the percent level!
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Cell level calibration

 Showers & Detectors
— Generalities
— EM Calorimeters
— Hadronic Calorimeters
« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning
« Calibration & Reconstruction

— Cell level calibration
« Layer weights
« @ intercalibration
« Offline compensation

— Electrons/photons
— Jets

— E-flow

— Simulation
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Sampling calorimeters: layer weights

For sampling calorimeters, the signal
deposited in each active layer has to be
multiplied by an adequate factor to get back
the “true” energy

dE/X,, (arbitrary units)

Factors are determined by test beam and/or
simulation

DO added a solenoide in front of the
calorimeter for the Tevatron Run Il

=»increase of dead material

= =>» the layer weights are increased for the
early layers to take the losses into account

According to the angle of the incident particle,
the amount of dead material varies

dE/dX,, (arbitrary units)

=>» layer weights vary ol
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Sampling weights: Data/MC

These sampling weights are determined from test-beam data and simulation
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Modeling the amount of dead material in front of the calorimeter is a crucial issue!
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Dead material mapping

Detail map of dead material has to be implemented in the Simulation
programs — in situ mapping: photon conversions!
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Figure 71. Mapping of photon conversions as a function of = and radius, integrated over ¢. for the ID. The
mapping has been made from 500,000 minimum bias events (~ 40 minutes of data-taking at 200 Hz). using
~ 90,000 conversion electrons of pr > 0.5 GeV originating from photons from 7° /1 decays.
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¢ intercalibration

Electronics calibration is not sensitive in variations on the calorimeter cells

Beams are not polarized, therefore the energy flow should not have any azimuthal
dependence = calorimeters are constructed in “rings” =» equalize the energy
response in one ring (depending on n, cell depth)

Difficulty: trigger should not bias the sample = low L1 trigger threshold
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¢ intercalibration
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Effect was less visible — Why?
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Finite integration time

With an infinite integration time we still see the full charge, not with a short integration time!

Integration time went from 3.4us (>> 450 ns) to 396 ns (85-90% of the signal collected)
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Software compensation

Originaly implemented in H1, now also used by Atlas

Classily Energy Built clusters from Classify cluster in em
deposits as EM/had. neighboring cells and hadronic clusters

- | correct for energy
response for hadrons

Correct for energy losses
between modules and
subdetectors

Clusters are reconstructed using “topological

algorithm: minln
» seeds: highest energy > 40 OO0 00
* neighbors: energy > 20 O EEEEC
Need to take care of overlapping clusters OOECOCOEE]
Clusters can span over subdetectors! Lt

HCP School 8/12/2008 Ursula Bassler - Irfu/SPP CEA Saclay 12



Software compensation

Classification based on cluster shape

- shower maximum 3000+ E=20GeV - . E=180GeV |
- average energy density I} pions . 200 pions .
- electro magnetic fraction 209 1t :
- — \MC ] I ]
. . 1000- JLP ®Data - wofllﬂ' ]
Determine the weights from ! Hnl“ﬂ I l% _
MC, as function of the O 0001 0002 05 g0 oosmesTos
cluster position: p p
ErcegL -W (BE) E?E};L VERY PRELIMINARY
<E EM +E non—EM +E invisible +E escaped > | i :I E 1

w(X)=

<EEM + Enan—EM>

Preliminary results on improvements: -
= AW -
« Hadron energy scale correct at 98% i

i == COrITecte 5 i ;
« Resolution dzo: E}n
; 7

== theoretic
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em reconstruction

 Showers & Detectors
— Generalities
— EM Calorimeters
— Hadronic Calorimeters

« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning
« Calibration & Reconstruction
— Cell level calibration

— Electrons/photons
* Electron reconstruction
e Electron calibration

— Jets

— Missing ET
— E-flow

— Simulation
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EM reconstruction

1/4 Detector
Bl CAL tower
B Pre-Shower
© _ ) CFT Layers

e basically: look for narrow
isolated clusters with high EM
fraction

e cone r=0.2
oE_ /E . >0.9
e isolation:

Econe0.4 _Econe0.2

total EM
Econe0.2 < O '2

EM

e track match for electrons (spatial and E/p), none for y:
e matching in preshower detectors
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EM identification

Main backgrounds:
« overlay over a T1° and a non-interacting 1+ jE-

* early showering 11+/- I-
» photon conversions 4=-

Calorimeter Isolation Had/em Ratio MEIP matching
0'3:_ — jets 0.07) — jets u.1a§ CDF
- — electrons - — electrons D.16F
0.25 0.06 E
D.14 . n
B 0.05 oo ead material in
0.2 U
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Using shower shapes

H-matrix

+ use longitudinal and transverse shower shapes to take into account
correlations between energy in cells

+ measure compatibility of EM cluster with an electron shower - y?

+ discriminate against hadronic (n) decays that pass EM fraction and
isolation cuts

100

¢ tuned on MC in An bins of 0.1,
Inl < 3.2 for different energies

¢ HMx8 / HMx9 / Hmx41

. energy fractions in each floor o |
(PS), EM1, EM2, EM3, EM4 '

- An, Ap in EM3 - grid (6,6) )
- 10g(E;oy |
- Zlo, vertex

U electrons

BB o HM41 Run 1
test beam+W->ev

a
[
K
H
;
4

number of events

® W —=>ev

20

0

"~ e B s 102 ”>.
For a description of the H-matrix: “Top Quark Search with the X

D0 1992-1993 Data Sample” Phys. Rev. D52 4877 (1995)
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Getting most out of it

« Use those input variables to built a multivariant discriminant:

Events

— Likelihood function, neural net
« Determine the electron identification efficientcy

— Determined from Z->ee samples with the “tag and probe” method
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Electron calibration

 Absolute scale from Z—>ee
events, with E, E, incoming m = \/2E1E2 . (1— COS 9)

electron energies, © opening angle

E Eraw cluster 4 K(Eraw cluster —>)

Raw cluster energy / \

measurement from corrected parameterized energy loss correction
calorimeter cell energies from detailed detector simulation
I"CZW
= > ¢,(J)-E,
j=all Cell energies after
cluster electronics calibration,
cells @ intercalibration and
One (unknown) calibration layer weights

constant per n ring

The c, calibration constants minimize the experimental resolution on
m, that is given by the very precise LEP measurements
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Energy loss parameterization

- :
% o3} Inl c;)r}el:t; O -
EM Energy Loss o It factor [w s
Corrections 2 I\5 GeV electtong oo
N energ:y cgrrect(ijonsi for :4 ﬁ ;FV{ f
eome ependen ! .
gffects:ry P F mﬁw f
¢ cracks, n dependence oal t ]
due to dead material in L ataceiors vaokosns

front of calorimeters

¢ derived from single
electron MC

etacorr a
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Electron energy calibration

! Invarkant riess - 2 candadatles(CCCC) ! | JPsi Resonance for LOW Triggers (Entire CC) |
’7:?’;2400 = — MC+QCD BKG 220
Zo000E- chi2/ndf=57.53/80 —— Data =
ok E= QCD BKG only 200¢
FP000E- 1801
S1800F -
BF . 160 —
S1600— DO Run IT Preliminary =
E 140
00 E
o3 120
28k 100
Eo00 :
b 800 ;_ 80 E_
600 60—
400 a0
200F- 20— b
ol pal o E P L PR S 8 IR
0 037 2 25 3 35 4 45 5 55 6

M [ ol
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Invariant mass [GeV] Invariant Mass (GeV)

Difficulty: get correct dead material correction from the simulation!

1.2

. . o ; o W—avMC
Other calibration methods: S sl electrons . W--evData
Low energy peaks: J/¥ b ‘ j:fx: SO
E/p: be aware of bremsstrahlung | sesaeeisgni,
effects! | il ih regesstustiey
. . N waditiedl
Essentially the same corrections apply | “peatt? tirthi
for photons! T ;
“d o 20 40 B0
p (GeV/c)
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 Showers & Detectors
— Generalities
— EM Calorimeters
— Hadronic Calorimeters

« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning
« Calibration & Reconstruction
— Cell level calibration
— Electrons/photons

— Jets
e Jet reconstruction
» Jet Energy Scale

— Missing ET
— E-flow
— Simulation
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Jet Finding

« Calorimeter jet (cone)

¢ jetis a collection of energy deposits with a
given cone R: R=./4¢’ + 4y?

¢ cone direction maximizes the total E; of the jet
# various clustering algorithms

= correct for finite energy resolution
= subtract underlying event
.................................. = add out of cone energy

)
w1

parton jet

e Particle jet

+ a spread of particles running roughly in the
same direction as the parton after hadronization
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Jet Algorithms: Cone

e Cone algorithms
¢ draw a cone of fixed size around a seed
¢ compute jet axis

eodraw a new cone around the new jet axis and recalculate axis
and new E;

+ iterate until stable

- In addition:

+ add additional midpoint seeds between pairs of close jets
+ split/merge after stable proto-jets found
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Jet Algorithms: k-

For each object and pair of objects: order all d; and d;:

2
dii — kT,i If dm|n d
ARZ } Collinear = merge particles

G
. 2 2
d; :kmln(kT,i,kT,('f AR<<1) T—
M Resolution “ min
p, [GeV]

Soft parameter = Jet
(D=1)
e theoretically favored, no split-merge

¢ to reduce computation time, start
with 0.2 x 0.2 pre-clusters
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Jet Energy Scale

e correct Jet Energy to the particle level

orr _ Ejur =0 P F, —MI

ET et , — corr __ ~T,jet

“ T FERS  treTT 4

e O: energy offset from underlying event, pile-up,
noise, multiple interactions M1
determined from Min. Bias Events

p . e R; calorimeter response
;@;;; Testbeam, MC, y-jet events
‘% ¢ S: energy contained in jet
” corrections from MC - energy in cones
@ around the jet axis

R - - -
|
‘i@%/ ﬁx&,}fﬁ*‘:m{;ev — depending on jet algorithm!
\ emf = (L8
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Subtract all energy msqﬂe the jet cone > .-D@ Run i vt 0T
not related to the hard interaction: S b A E
= - + -

E 35:_'1_ NP+ 2 M -é

@ electronics and uranium noise E 30f | NP3 M _.-"J' E

@ multiple pp interactions in the E 23: 1
same bunch crossing o 15;_ E

@ left-overs from previous bunch "“%‘“ L “‘
crossings (pile-up) R E

Offset corrections

a0

Noise/pile-up
Estimated using zero-bias data; data triggered on the presence of bunch crossings and vetoing any
hard interactions

Multiple interactions
Measured in minimum-bias data; data triggered using the luminosity monitors to signal potential
inelastic scatters. Contribution from additional interactions determined from:

MI(Npv, L) = MinBias(Npv, L) — MinBias(Npy = 1, L)

HCP School 8/12/2008 Ursula Bassler - Irfu/SPP CEA Saclay 27



Response correction

P
One possibility: .
g
use y+jet events
-y well measured and calibrated q _
_ jet
- missing transverse energy projection: P
l'.l'.ﬁ | o I uﬁ - ]
Er . of hﬂ{g'i D@ Run Il ;
Rnag = 1 4 —— P17 ot
ﬁ,"r‘ 0.70 —
The 25% correction to the 0.60 E

response is the largest of all
energy scale contributions

=
o
(2]
O T T [ TP T [ TI T[T T [ TTIT[TTTT

rel. difference [%]
[ N N ]
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n dependent response correction

1.1ﬂ_|||||||||||||||||||||||||

dijet

L1 95E Do Run 700 Gev
1005 —g7 'm DI 50 GeV —
Calibrate forward jets with ot
respect to central ones: ors/
 photon+jet one tag photon vk
within || < 1.0 contributes to g
low p; region
« di-jet one tag jet within |n| <
0.4 contributes to high p- ey
region ;j oo et E

—-—- stat. at pT' = 50 Ge\ic

2 — — — average residual ]
af -7 resol. bias corr. E
11 1 1 I 11 1 1 I L1 1 1 I 11 1 1 | 11 1 1 I 11 1 1 I 11 1 1 I =

0.0 0.5 1.0 15 20 25 30 35
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JES for k; algorithm

Problem of k; algorithm in hadron
colliders: Multiple interactions

*k; algorithm is attracted to
energy deposits and picks up the
energy from MI, UE etc<.

o(L>50)/ o(L<30)

* k; algorithm has now been used
by CDF to measure a cross-
section for Run2:

« emiprical energy correction
factor used using the fact that the
cross-section is luminosity
independent

o(L>50)/ o(L<30)

1.1%

141
185

083

g

&S
bE

r

Before correction

JET

Py [GEviE]

After correction

i ———— ———

I L L I L
5 100 150 200 250
PET [EeWc]
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Jet calibration from top events

Use the W-> jj decay in top events to

calibrate the jet energy scale

Fit the JES in data an MC

Constraints JES to 2% with 166 evnets
= At LHC: 45 000 top events/month!

CDF Run Il Preliminary (955 pb™)

CDF Preliminary 955 pb™

0 0
L

5 [ L 80 |
1.05 - L

60 |

1L
- 40 |
| i i P L 0
160 165 170 175 180 O 20
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b-jet calibration

e haive reconstruction
of Z-mass shows a
lower mass for selected
b-jets than light quark
jets.

= energy losses from
semi-leptonic b decays

(v, n)

— wider b-jets (due to
the large b-mass)
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pp— Z — bb ot 2 TeV
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50000 = Entries 300
Meo 81.93
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o |
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Z—> bb

CDF Run 2 preliminary - L=333 pb"
Selected events
Background

Z signal: 3394 + 515 events
Fit result: y%/dof= 1.77

Very difficult to see Z-jj events due

to QCD background p— : N
> 8000

except for Z->bb that has a more 5

stringent selection g
34000

Difficult to trigger:

CDF: secondary vertex trigger 20001

DO0: events with muons from semi- I FYTTIIYYTI FTYTITTYY
leptonic decays b et ot s [BA
p y
Calibration: 300 | D@ Run I Preliminary
250 |- Integral 1168 events
M used to estimate energy lost by v 200 | w/ndf  975/9

Constant 226.3 +42.2
Mean 81.02+2.23
Sigma  10.73+2.09

Data/MC difference o

100

50 |

-50 |

-100;
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« Showers & Detectors
— Generalitie
— EM Calorimeters
— Hadronic Calorimeters

« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning

» (Calibration & Reconstruction
— Cell level calibration
— Electrons/photons
— Jets
— E-flow
— Simulation

HCP School 8/12/2008 Ursula Bassler - Irfu/SPP CEA Saclay 34



Idea:

« Combine energy measurement from the calorimeter with the
momentum measurement from the tracking:

« To not double count the energy: energy deposited in the
calorimeter by the tracks has to be masked

- First algorithms developed by Aleph: clean e*/e- environment
* Algorithms also developed by H1 for inclusive measurements,
successfully adapted by CDF:

- extrapolate track to the inner surface of the calorimeter and apply a cone
or a cylindrical mask to the calorimeter cells behind the track
- maximize between the energy in the mask and the track momentum

 Track+calorimeter jet algorithm developed by DO

- be aware of tracks start in the jet cone, but leak out of it and vice-versa
- algoritm that prevents masking of too much energy
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Calorimeter+track jets

* Improvements in particular from low momentum tracks
- Better track than calorimeter resolution for low energies

- Threshold for particles to “reach” the calorimeter

Jet Enery Resolution
Frat Caldet o
s F —(Calle .24 —
T =T Inlk07 W cal only
1;_ —— TrackCalJet 0.22} Hltrack+cal
0.0 T84tk ko 4001 kbt g s B e A=A s 021 .
0.8} a
;-wv—v-'r-va-v-'r-vl""-wv-'"'1‘-'"""'-'""‘w“w"""':‘:" o i
nc?_ ~
= 0.16
06 | < 0.7 -
- _ 014
0.5 track multiplicity 2 1 -
045 0121
.:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII -IIIIIIII|IIIIIlllllllllllf
%355 % 40 45 50 55 60 & 70 I e —
¥ Py (GeVic) Jet Energy (GeV)
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« Showers & Detectors
— Generalities
— EM Calorimeters
— Hadronic Calorimeters

« Signal Treatment & Commissioning
— Signal treatment
— Online Calibration
— Commissioning

« Calibration & Reconstruction
— Cell level calibration
— Electrons/photons
— Jets
— Missing ET
— E-flow
— Simulation
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Many corrections derived for the energy determination, (weighting
factors, dead material corrections) depend on the simulation

=>a simulation corresponding in the best possible way to the real
world is crucial!

Full and detailed simulation used a lot of computing time:

=>»"fast simulation” uses only parameterizations in n/¢ of resolution,
energy losses and efficiencies applied to particles on the generator level.

Those are mostely obtained from the full simulation

%
1 A

Basic Principle of the Geant /'
Simulation: APt
Track the particles through a precise ol |

Along z-Axis
S

L

implementation of the various detector
materials

- CDF/DO use Geant 3 / 5 /
 LHC experiments use Geant 4 r

But: several programs to simulate em/had showers exist

HCP School 8/12/2008 Ursula Bassler - Irfu/SPP CEA Saclay 38



Simulating showers

Different approaches to simulate the physics: None describes the data!
400 keV electrons in Ur
=» Factor of 3 difference PG e 7 sean: Deter= Eost—GRh
e D@ Preliminary
—_ 0.005 %102
_ Tt ‘= 0.0045 g
E 0.012 Geant 3 E “-““é ‘ ESG4 %101
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Simulation parameters can be adjusted (maximum step size, maximum
fraction energy loss in one step, boudary crossing precision...)

=>» Values of these parameters influence the shower properties and the computing
time needed
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Hadron showers

| CHIPS |

At rest
Absorption
u-. - . K-, anti-p

[ Photo-nuclear, lepto-nuclear (CHIPS) |

| High precision neutron|

| Evaporation | .
[ Fermi breakup | Fre- q | String
COIMPO1In
[ Multitragment | * | QG String ——|*
| 7y de-excifation | | Binary cascade |
Radioactive | Bertini cascade |
Decay
B — o
- LErF ]

1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV

The number of physics processes to be considered is extremely complex!
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Geant 4 ingredients

_ - G4 LHEP
* A lot of activity in this area « CMS : ~G4QGSH
since 1997 for LHC purposes shower E ~TB Data
- Comparions with LHC test shape owns
beam data comparison % i
+ Cross-sections N\
« Models for interactions edeeded e d e,
— Elastic Laver
_ Inelastlc QGSP _ |ne|astlc - LH EP pions, leaving MIP in ECAL and LO.
. . N _ » High Energy
String models ( 1UIGEV 1 TeV+ Parameterized
— Quark Gluon String (QG.S}, | (~25GeV -
— Complemented by Quasi-elastic + Low Energy
* Optional : Cascade ( from ~0.2 to Parameterized (0- ~55
or 10 GeV): BIC, Bert GeV)
+ Pre-equilibrium and equilibrium
models: P
+ Capture + Capture
+ Decay * Decay
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Be precise with dead material!

| Z mass resolution per category |

T 9F
Energy resolutions S a5t -
depend a lot on the ERS % ; i . '

. . @ = ' i & reen:
material in front of your £as-, 5 I i # .| standard
calorimeters — not £ 717 g1 /7T 4| simulation
always the knowledge £“F! - Blue: with
. e . additional
is properly propagated = 15E N erial
from the pits to the 1L
software groups! 05E

o e e i 20 22 24
Category
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Reconstruction & Calibration

« Understanding and simulating correctly your detector and the
showers is fundamental to determine energy corrections

« Try as much as possible to derive correction from data or find
estimators to validate the data/mc correspondence

« Calorimeters allow to reconstruct a big variety of objects to do
physics analysis with:
— Electrons/photons
— Jets
— (missing E; and taus)

« Combining tracking and calorimeter measurements can
Improve results: correct modeling is necessary!
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