

Low-nu Relative Flux and Prism issues

C. Distefano LNS-INFN

On behalf of the INFN DUNE and R. Petti

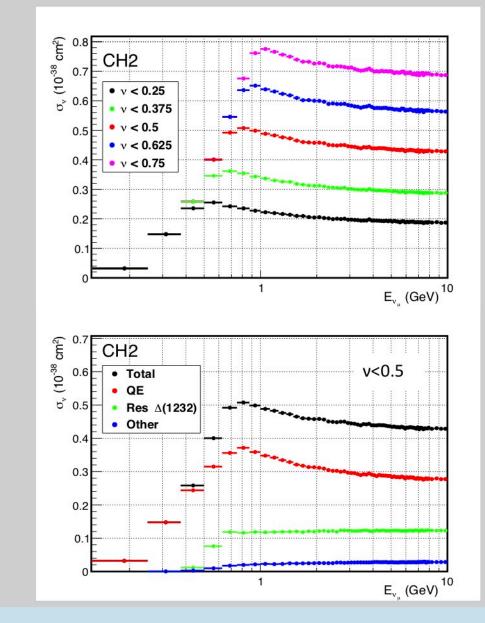
DUNE Multi-Purpose Detector Workshop

Low-nu method

For $v < v_0$ (where $v_0 << E_v$): cross section is approximately constant as a function of neutrino energy.

We can measure the shape of the neutrino flux as a function of $E_{v_{.}}$

$$\Phi \propto \frac{U(D_v - B_v)}{C_v \times \Delta E_v}$$


Where

 D_v : reconstructed events

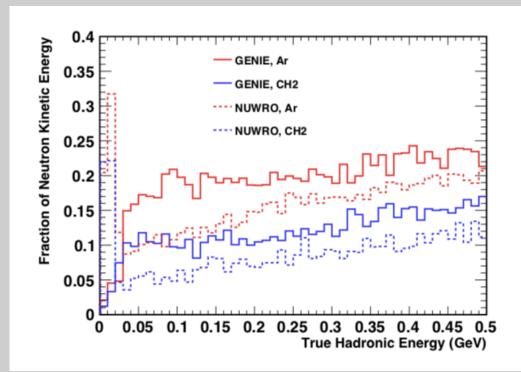
 B_{v} : background predicted by the simulation U: unfolding operation (energy smearing and acceptance)

 $\Delta E_{\nu}\!\!:\,$ width of the neutrino energy bin

 $C_{\nu}\!\!:$ correction factor for the small E_{ν} dependence of the low- ν cross section

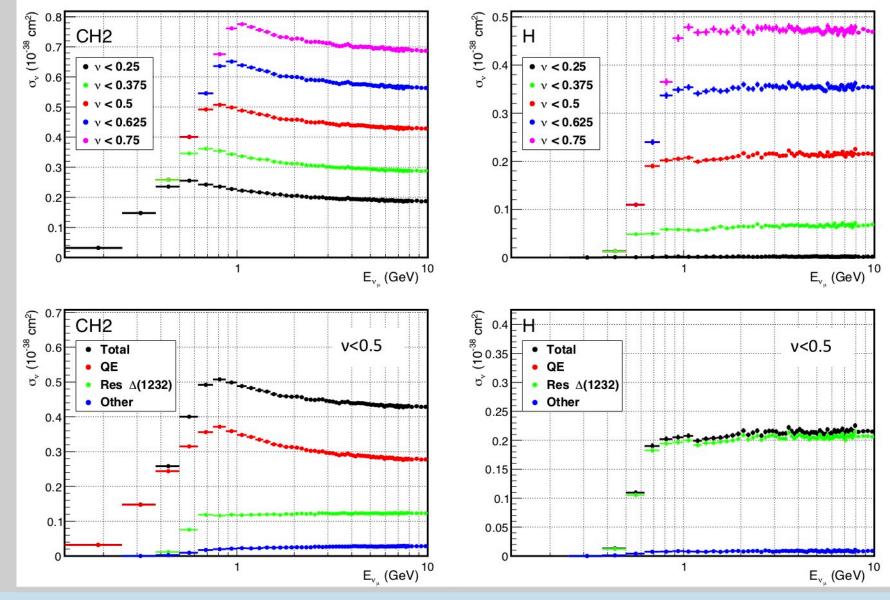
CH2 as target for low-nu analysis

Significant systematic uncertainties from nuclear effects and reconstruction of hadronic energy v:

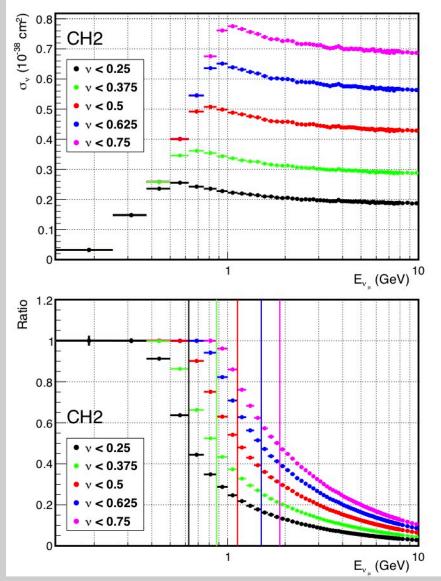

- total visible energy
- acceptance of the v_0 cut used in the analysis

One example of such effects from neutron production, which are typically associated to some undetected energy

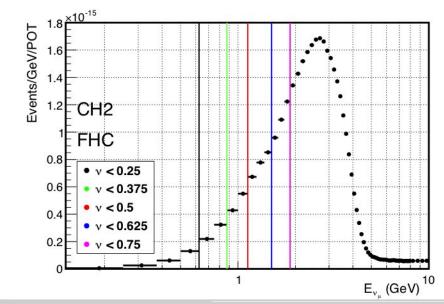
At small values of v hadronic energy carried by neutrons is about a factor of 2 smaller in CH_2 than in Ar.


Similar results apply to the average number of neutrons produced.

Results confirmed by using different event generators, although large uncertainties are present on the neutron production



Interaction with hydrogen


Choice of the V_0 cut

A larger v_0 will select more data and yield smaller statistical uncertainties in the flux.

A smaller v_0 will reduce the energy dependence of the low-v cross section, and hence the flux-model dependence.

The minimum neutrino energy for each ν_0 cut is set to keep the low-nu events less than 50%

Simulations

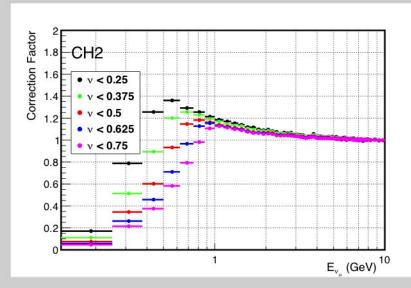
Beam flux: 120 GeV proton, 1.1×10²¹ POT/year Beam direction: theta=0.101 rad Beam mode: FHC

Detector: KLOE inner tracker Simulation based on GENIE 2.12.10

Sample 1: used as *data*

Spectrum: beam Exposure: 5 years (5.5×10²¹ POT)

Sample 2: used as *MC* truth

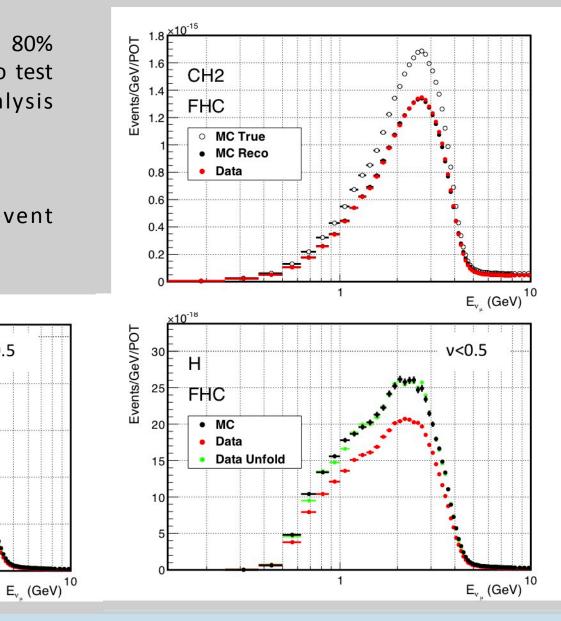

Spectrum: flat in energy

• Used to compute the correction factor

$$C_{v} = \frac{N(E_{v}, v < v_{0})}{N(E_{v} \approx 10 \text{ GeV}, v < v_{0})}$$

• Reweighed to the beam spectrum and used as MC

OII			
CH_2			
$\nu_0 \; (\text{GeV})$	E_{min} (GeV)	$N_{int}^{\nu}/5.5 \cdot 10^{21} \text{ POT}$	N_{int}^{ν}/N_{int}
0.250	0.625	$2.75 \cdot 10^{6}$	0.10
0.375	0.875	$3.97\cdot 10^6$	0.14
0.500	1.125	$5.43\cdot 10^6$	0.19
0.625	1.500	$6.23 \cdot 10^6$	0.22
0.750	1.875	$6.38 \cdot 10^6$	0.23
Н			
$\nu_0 ~({\rm GeV})$	E_{min} (GeV)	$N_{int}^{\nu}/5.5 \cdot 10^{21} \text{ POT}$	N_{int}^{ν}/N_{int}
0.250	0.375	$2.83 \cdot 10^{3}$	0.00
0.375	0.500	$9.94 \cdot 10^{4}$	0.05
0.500	0.875	$3.10\cdot 10^5$	0.14
0.625	1.250	$4.67\cdot 10^5$	0.21
		$5.45 \cdot 10^5$	0.25


Detector response

We simulated an acceptance of 80% and a energy resolution of 5% to test the unfolding and the analysis procedure

Detector simulation and event reconstruction on going

1

v<0.5

Frascati, 18-19 March 2019

×10⁻¹⁵

CH2

FHC

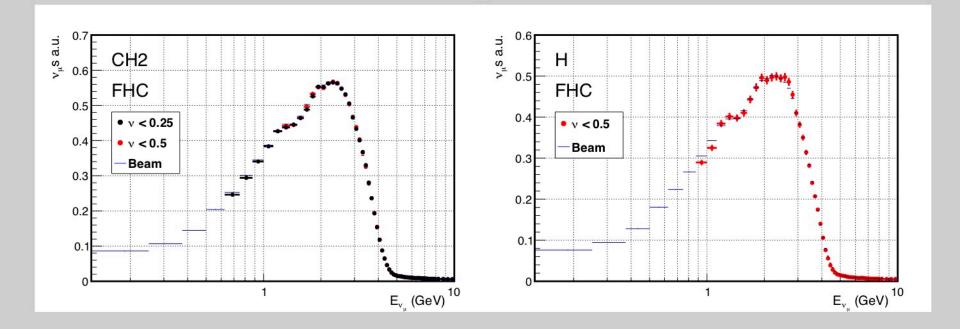
MC

Data

Data Unfold

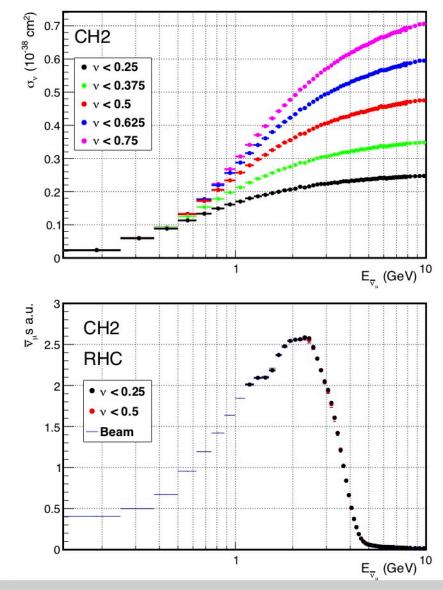
0.5

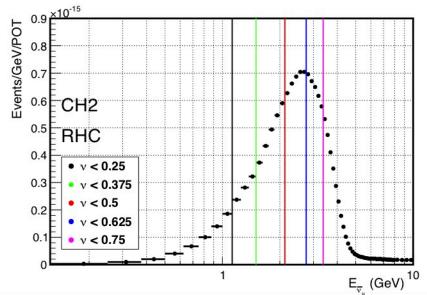
0.3


0.2

0.1

Events/GeV/POT

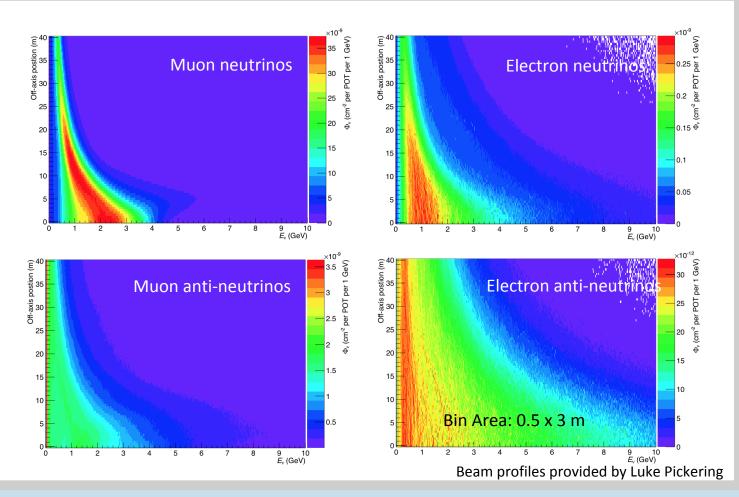

Relative fluxes



RHC mode: anti-neutrinos

CH_2		analar states storestere-estates	1.22010.021000
$\nu_0 \; (\text{GeV})$	E_{min} (GeV)	$N_{int}^{\nu}/5.5 \cdot 10^{21} \text{ POT}$	N_{int}^{ν}/N_{int}
0.250	1.125	$2.28\cdot 10^6$	0.22
0.375	1.500	$2.75\cdot 10^6$	0.26
0.500	2.125	$2.69\cdot 10^6$	0.25
0.625	2.750	$2.03 \cdot 10^6$	0.19
0.750	3.375	$1.19\cdot 10^6$	0.11
Н			
$\nu_0 \; (\text{GeV})$	E_{min} (GeV)	$N_{int}^{\nu}/5.5 \cdot 10^{21} \text{ POT}$	N_{int}^{ν}/N_{int}
0.250	1.750	$5.29\cdot 10^5$	0.27
0.375	2.250	$4.86\cdot 10^5$	0.25
0.500	2.875	$3.35\cdot 10^5$	0.17
0.625	3.375	$2.12\cdot 10^5$	0.11
0.750	3.875	$1.20\cdot 10^5$	0.06

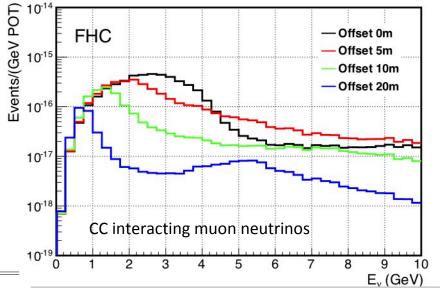
Next steps...


- Simulate the detector response:
 - particle and event reconstruction
 - particle identification
 - background
- Improve the the unfolding procedure
- Optimize the analysis (low-nu cut values, energy thresholds...)

PRISM-like exposure

Beam profile simulation:

We implemented the simulation of neutrino events according to beam fluxes determined through a 2D energy-position matrix and choosing an off-axis alignment for the detector.



Interaction rate

Internal LAr target (1.01 ton mass)

Seven different positions, including the onaxis alignment, were simulated.

Equal F	OTs at each position							
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e		
0 m	0.786	$9.4 \cdot 10^4$	$3.4 \cdot 10^{4}$	$2.9 \cdot 10^{3}$	$1.1 \cdot 10^{3}$	8.5		
$5 \mathrm{m}$	0.786	$7.3 \cdot 10^{4}$	$2.6 \cdot 10^{4}$	$2.5 \cdot 10^{3}$	$9.3 \cdot 10^{2}$	6.3		
$10 \mathrm{m}$	0.786	$3.2 \cdot 10^4$	$1.2 \cdot 10^{4}$	$1.5 \cdot 10^{3}$	$6.1 \cdot 10^2$	2.7		
$15 \mathrm{m}$	0.786	$1.4 \cdot 10^{4}$	$5.5 \cdot 10^{3}$	$8.0 \cdot 10^{2}$	$3.9 \cdot 10^2$	1.3		
$20 \mathrm{m}$	0.786	$7.9 \cdot 10^3$	$3.2 \cdot 10^3$	$5.2 \cdot 10^2$	$2.5 \cdot 10^{2}$	0.7		
$25 \mathrm{m}$	0.786	$4.8 \cdot 10^3$	$2.0 \cdot 10^3$	$3.4 \cdot 10^{2}$	$1.7 \cdot 10^{2}$	0.4		
$30 \mathrm{m}$	0.786	$3.1 \cdot 10^{3}$	$1.3 \cdot 10^{3}$	$2.5 \cdot 10^{2}$	$1.2 \cdot 10^{2}$	0.3		
All	5.500	$2.3 \cdot 10^{5}$	$8.4 \cdot 10^4$	$8.8 \cdot 10^{3}$	$3.6 \cdot 10^{3}$	20.2		
Half POTs on-axis								
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e		
0 m	2.750	$3.3 \cdot 10^{5}$	$1.2 \cdot 10^{5}$	$1.0 \cdot 10^{4}$	$4.0 \cdot 10^{3}$	29.6		
$5 \mathrm{m}$	0.458	$4.2 \cdot 10^{4}$	$1.5 \cdot 10^{4}$	$1.5 \cdot 10^{3}$	$5.4 \cdot 10^{2}$	3.7		
$10 \mathrm{m}$	0.458	$1.9 \cdot 10^4$	$6.8 \cdot 10^3$	$9.0 \cdot 10^2$	$3.6 \cdot 10^2$	1.6		
$15 \mathrm{m}$	0.458	$8.5 \cdot 10^{3}$	$3.2 \cdot 10^{3}$	$4.7 \cdot 10^2$	$2.3 \cdot 10^2$	0.7		
$20 \mathrm{m}$	0.458	$4.6 \cdot 10^{3}$	$1.9 \cdot 10^3$	$3.0 \cdot 10^{2}$	$1.5 \cdot 10^{2}$	0.4		
$25 \mathrm{m}$	0.458	$2.8 \cdot 10^3$	$1.2 \cdot 10^{3}$	$2.0 \cdot 10^2$	$9.7 \cdot 10^{1}$	0.3		
$30 \mathrm{m}$	0.458	$1.8 \cdot 10^{3}$	$7.7 \cdot 10^{2}$	$1.4 \cdot 10^2$	$6.8 \cdot 10^{1}$	0.2		
All	5.500	$4.1 \cdot 10^{5}$	$1.5 \cdot 10^{5}$	$1.3 \cdot 10^{4}$	$5.4 \cdot 10^{3}$	36.5		

Two different run plans:

equal POTs dedicated at each position, including the on-axis alignment and half POTs on-axis.

Detector response and analysis on going.