v-event reconstruction in the KLOE-STT layout

P. Bernardini, A. Surdo Università del Salento and INFN, Lecce, Italy

Frascati, March 18th, 2019

Fluka simulation

"STT-only" layout interactions in the tracker

- Interaction vertices in STT
- STT digits (Y-Z view)

- Interaction vertices in LAr
- STT digits (Y-Z view)

Reconstruction strategy (without MC truth)

- **Step 0** Vertex reconstruction based on STT-hit topology
- Track finding (global transform method)
- Linear or circle fits of the tracks
- **Step 1** Vertex reconstruction from crossing of 2 most rigid tracks
- Possible repetition of the procedure
- Track matching \Rightarrow 3D track
- \textbf{p}_{\perp} from Larmor radius dip-angle λ from x-vs- ρ fit

momentum estimate p = p_ \perp / cos λ

in both views (Y-Z and X-Z)

3

Step 0 - Rough vertex reconstruction based on topologycal criteria

- STT spread profile on X and Y axes vs Z coordinate
- removing of secondary vertices
- first (in z) STT hit in case of single-track events

Each trajectory is fully reconstructed!

 $u = +(z-z_v) / [(z-z_v)^2 + (y-y_v)^2]$

STT-Only - Error on Vertex reconstruction - Step 1

STT-Only - Error on Vertex reconstruction - Step 1

Momentum estimate for reconstructed tracks

- p_⊥ from Larmor radius after circular fit in the bending (y-z) plane
- dip-angle (λ) from linear fit in the x- ρ plane

 $\rho = z \cos \phi_0 + y \sin \phi_0$ $\phi_0 = atan[-(z_0-z_c)/(y_0-y_c)]$ z_0, y_0 coordinates of 1st hit on the track z_c, y_c coordinates of the center of fit-circle

- momentum measurement: $p = p_{\perp} / \cos \lambda$
- 3D-track is needed ⇒ matching of tracks in y-z and x-z views

Error on momentum in the bending plane (p_{yz}) track-by-track with at least 10 STT hits (events with track multiplicity up to 3)

(1) Sample of events with 1 reco track on both views:
12% (QE: 68%, RES: 10%, DIS: 22%)

(2) Sample of events with 2 reco tracks on both views:18% (QE: 43%, RES: 21%, DIS: 36%)

STT target

ntracks

Single-track sample

Only 1 reconstructed track on both views:

events

·20

-10

 $\begin{array}{l} 87\% \rightarrow \text{muons} \\ 9\% \rightarrow \text{protons} \end{array}$

 $4\% \rightarrow pions$ or nuclear fragments

percentage error on 1/p (%)

Neutrino beam external interactions

The removal of this background has been studied by means of the <u>vertex reconstruction</u> and exploiting the time resolution of --ECal (~0.25 ns) and STT (~1.5 ns)

Simulated 19x10³ external interactions (in yokes, cryostat and calorimeter)

Removal criteria: > Accepted events in the fiducial volume (reco vertex 30-cm inside the STT volume)

- > Topological cut (ECal hits w.r.t. vertex)
- > Time sequence of ECal and STT hits
- > Angle of the total reconstructed momentum θ_z < 0.5 rad

Result (to be improved) Signal/Noise = 3.9

ECal as

a veto

Conclusions

Preliminary reconstruction of the CC events has been implemented without MC "truth" (vertex, track finding, fit, single-track momentum)

□ Similar results in STT-only and LAr+STT layout.

Many improvements of the reconstruction are possible and necessary (Kalman filter, track association and so on)

Removal of external beam-neutrino events has been implemented

Backup slides

STT hit "digitization"

- Two separate samples of ν interactions (for the two detector layouts) generated with FLUKA MC-simulation
- STT hits on 63 planes in each view (X-Z and Y-Z) provided by the MC-simulation for charged particles
- STT-resolution of 0.2 mm simulated by means of Gaussians on X and Y coordinates
- For any charged particle MC-track:

hits for each STT plane are grouped to get the "STT-digits" in X-Z and Y-Z views (digit coordinates from the average of hit coordinates)

"STT-Only" detector

MC (complete) event

Side view (Z-Y)

"STT-Digitized" event

Another example

Event Track recontruction

4 tracks are (almost) reconstructed ...

"LAr target+STT" detector

MC (complete) event

"STT-Digitized" event

"LAr target + STT": Error on Vertex reco (Step 1)

As benchmark ...

Use:

True Vertex and True (MC) tracks

Then:

Fit all tracks and Reconstruct vertex from most rigid track-crossing (step 1)

STT-only layout: track multiplicities

(1) Sample of events with 1 reco track on both views:
12% (QE: 68%, RES: 10%, DIS: 22%)

(2) Sample of events with 2 reco tracks on both views:18% (QE: 43%, RES: 21%, DIS: 36%)

Matching the tracks in the two views ...

Track multiplicities (LAr-target layout):

MC tracks: charged particle with ≥3 STT-hits

(1) Sample of events with 1 reco track on both views:21% (QE: 68%, RES: 17%, DIS: 15%)

(2) Sample of events with 2 reco tracks on both views:14% (QE: 14%, RES: 22%, DIS: 64%)

LAr-target layout: event sample (1)

1 Reconstructed track on both views:

94% \rightarrow muon, 5% \rightarrow proton, 1% \rightarrow pion or nuclear fragment

Error on p_{\perp} from Larmor radius:

LAr-target layout: event sample (1)

Error on dip-angle (λ)

Error on total momentum $p = p_{yz} / \cos \lambda$

1 reconstructed track on both views

Effect of the background removal on the neutrino spectrum

