A proposal to enhance the DUNE ND complex

[DUNE-doc-13262]

On behalf of the INFN DUNE and R. Petti

What, Why, How?

- KLOE + STT + LAr: a multipurpose Near detector
- Complementing the baseline design
- Combined measurements on Ar and H
- Either on-axis monitoring
- Or easily movable "dune-prism"
- Reduce Systematics for Long-baseline Oscillation
- Physics Facility for Precision Measurements and Searches
- Synergy with other detectors in the ND complex
- Full simulations and reconstruction to demonstrate performances

Details

Kloecal fine structure

Flux measurements

- Φ (E_v) Measurements
 - Absolute v flux from v e \rightarrow v e elastic
 - Fluxes vs E_v , ratios of v_x/v_y (e, μ , anti) from interactions on Hydrogen
 - the availability of large statistics from a hydrogen target allows precisions far exceeding what is achievable with any nuclear target.
- Number of CC interactions for 5 years exposure to CP optimized beam:
 - ν_{μ} on H : 2.7 x 10⁶
 - $\vec{v_{\mu}}$ on H : 2.4 x 10⁵
 - v_e on H : 4.0 x 10⁴
- v-e ES in FHC : 1000/year in STT, possibly combined with measurement from large mass pixelated LAr detector

FHC	CP optimized beam $(1.2MW, 5y)$					
	$ u_{\mu}$	$ar{ u}_{\mu}$	$ u_e$	$\bar{ u}_e$		
All	$37,\!169,\!700$	1,711,270	$549,\!615$	88,165		
С	$25,\!832,\!700$	$1,\!123,\!710$	380,710	57,750		
Н	$2,\!679,\!270$	244,530	40,315	12,155		
Ar	7,863,680	306,790	$117,\!095$	$16,\!445$		
	CP optimized beam $(1.2MW, 5y)$					
RHC	CP op	timized beam	$(1.2\mathrm{MW},$	5y)		
RHC	$\stackrel{\rm CP op}{ u_{\mu}}$	timized beam $\bar{\nu}_{\mu}$	ν_e (1.2MW, ν_e	5y) $\bar{\nu}_e$		
RHC All	$CP \text{ op} \\ \nu_{\mu} \\ 5,804,320$	timized beam $\bar{\nu}_{\mu}$ 13,316,900	ν_e (1.2MW, ν_e 260,425	5y) $\bar{\nu}_e$ 190,850		
RHC All C	CP op ν_{μ} 5,804,320 4,036,180	timized beam $\bar{\nu}_{\mu}$ 13,316,900 8,688,020	$\begin{array}{c} (1.2 \mathrm{MW}, \\ \nu_e \\ \hline 260,425 \\ 380,710 \end{array}$	5y) $\bar{\nu}_e$ 190,850 124,575		
RHC All C H	CP op ν_{μ} 5,804,320 4,036,180 425,645	timized beam $\bar{\nu}_{\mu}$ 13,316,900 8,688,020 1,985,780	$\begin{array}{c} \nu_e \\ \hline \nu_e \\ 260,425 \\ 380,710 \\ 19,085 \end{array}$	5y) $\bar{\nu}_e$ 190,850 124,575 27,225		

Number of CC interactions

18/03/2019

 $\sigma \text{ and Nuclear Effects}$ $N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \ \Phi(E_{\nu}) \ P_{\rm osc}(E_{\nu}) \ \sigma_{\rm X}(E_{\nu}) \ R_{\rm phys}(E_{\nu}, E_{\rm vis}) \ R_{\rm det}(E_{\rm vis}, E_{\rm rec})$

- Events on Ar, H, CH₂, additional C target within the same detector
- Compare Ar events with free proton kinematics (H)
- Unfolding nuclear effects (R_{phys}) from detector effects (R_{det})
- \rightarrow measure $\sigma_x R_{phys}$
- Lar TPC detector effects (==Far Det) studied by pixelated LAr TPC
- σ_x on Ar using the large statistics from the LAr and HPgTPC detectors

Simulations

- Two parallel streams
- GEANT4 + GENIE + dunendggd
- FLUKA (with internal generator) + ROOT
- Same neutrino fluxes from http://home.fnal.gov/ ljf26/DUNEFluxes/
- Same STT configuration and LAr meniscus
- In FLUKA: detailed EM Calo geometry+readout

Plots: em-calo hits (black) and readout cell centres (yellow) (integrated over many events)

Results – Muons

FLUKA sim: muon-track reconstruction based on STT hits, assuming a spatial resolution of 0.2 mm on y and x axes and 0.01 mm on z axis (beam axis).

Improvements ongoing

Good resolution on p (~3%) for both targets Good resolution on dip angle ~1.7 mrad

Charge mis-id ~0.02%

Results: - electrons

Generated in STT with GENIE+GEANT4. Very good resolutions, tails due to circular fit approximation \rightarrow to be improved (e.g. Kalman filter)

Results- π^0

Reconstructed CC sample

Number π^0	number of events
0	2556
1	1041
2	307
3	67
4	21
≥ 5	8
Total	4000

Resolutions: 1 π^0 16% 2 π^0 18% Reconstruction from EM CALO clusters Segmentation $\Delta x = 20 \text{ cm}$ and $\Delta \phi = 5 \text{ deg}$. Energy smearing $\sigma_E / E \approx 5.7\% / \sqrt{E(GeV)}$ Position from hit barycentre + resolution of the KLOE calorimeter (4.5 mm).

2 π^0 sample: π^0 invariant mass, Considering only 4-cluster events

18/03/2019

Results: - Neutrons : efficiency

18/03/2019

FLUKA simulation, detailed EM-CAL. Reconstruction uses real calo segmentation + measured signal attenuation and time delay in fibres. Combined with STT hits as for muons

Results: - Neutrons: energy from ToF

FLUKA simulation. Reconstructed ToF from vertex in Ar to hit in STT or EM-CALO

Early interaction not detected. ToF from fast secondary (photons) or detected hit far from first interaction (elastic scattering)

Many scatterings not detected. Path much longer than straight line

18/03/2019

On full spectrum:

the neutron kinetic energy can be reconstructed with about 30% precision for about 28% of the detected neutrons.

Results: vertex and track finding

• A full realistic event reconstruction based only on detected quantities, avoiding the use of MC true information, is under development using FLUKA simulated events

Two-step method: first rough vertex finding, allows for coordinate transform Peaks in ϕ correspond to tracks Second vertex finding from

track intersection

• Bottom: track multiplicity in QE and all events

- First results • v_{μ} CC sample
- Results: vertex and track finding

120

Entries

Mean

RMS

 χ^2 / ndf

1010

5.953

26.84

100

5.788/5

Muon Acceptance Study

Destiny of muon produced in AC fiducial volume

A very crude muon ranger

Measure kinetic energy of escaping muons through range

• 10 iron slabs (10cm thick) around AC with interleaved trackers (5cm) to connect the tracks emerging from AC

 Additional tracker in the space between yoke and cryostat

Acceptance

Overall muon energy resolution ~ 5.5 %

Next steps

- Improve details of singe particle reconstruction
- Finalize full event reconstruction
- Apply to random events, check identification and reconstruction
- Optimize nuclear target configurations
- Apply to / optimize PRISM-like data taking
- Full background evaluation
- For the moment, apply the single-particle quantities to physics analysis (in the following).
- Details in the note: **DUNE-doc-13262**

Performances (examples of)

 Good resolution on tracks
 →good efficiency and purity for the kinematic selection of interactions on H

	R_{mH} and $p_{T\perp}^{H}$ cuts		$\ln \lambda^{H}$ cut	
Process	Efficiency	Purity	Efficiency	Purity
$\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$	93%	86%	90%	92%
$\bar{\nu}_{\mu}p \rightarrow \mu^{+}p\pi^{-}$	89%	84%	90%	88%
$\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$	95%	80%		
$\nu_{\mu}p$ CC inclusive	83%	73%		

- Good track and neutron efficiency → flux shape with low-v method for QE and RES events on H. Total statistics (5 years) expected is about 2.4 10⁶ for RES and 800 000 for QE
- Low-v method also on global STT: here deconvolution of MC smeared data sample to recover input neutrino flux from interactions in STT
- Almost identical performances for events in the LAr meniscus and in the STT → direct comparison of events on Ar and H (or C) for nuclear effects assessment
- Determination of parent $\pi^{\pm}, K^{\pm}, K^{0}$ distributions from measured $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ spectra (extrapolation to FD)

Performances (examples of)

• Charge separation and electron identification $\rightarrow v_e / v_\mu$ and all other species with high statistics (80000 \bar{v}_e events in FHC mode 5 years)

 Very good angular resolution on electron tracks → flux determination from scattering on electrons (rate and shape): The selection efficiency is about 84% with a total background of 5%, composed of QE interactions without reconstructed proton (3%) and NC π⁰ interactions (2%). Can be combined with data from external Lar. STT provides smaller statistics but better systematics

PRISM

• The whole detector can be moved on rails, for a PRISM-like exposure.

- Event rates here for ½ year, in the LAr meniscus, FHC
- v_{μ} CC : 3.1 10⁴ at the largest angle in 5+5 years
- Factor 5 more in STT

Equal POTs at each position							
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e	
0 m	0.786	$9.4 \cdot 10^{4}$	$3.4 \cdot 10^4$	$2.9 \cdot 10^3$	$1.1 \cdot 10^{3}$	8.5	
5 m	0.786	$7.3 \cdot 10^4$	$2.6 \cdot 10^4$	$2.5 \cdot 10^3$	$9.3 \cdot 10^2$	6.3	
10 m	0.786	$3.2 \cdot 10^{4}$	$1.2 \cdot 10^4$	$1.5 \cdot 10^3$	$6.1 \cdot 10^{2}$	2.7	
15 m	0.786	$1.4 \cdot 10^{4}$	$5.5 \cdot 10^3$	$8.0 \cdot 10^2$	$3.9 \cdot 10^2$	1.3	
20 m	0.786	$7.9\cdot 10^3$	$3.2\cdot 10^3$	$5.2 \cdot 10^2$	$2.5 \cdot 10^2$	0.7	
25 m	0.786	$4.8 \cdot 10^{3}$	$2.0 \cdot 10^3$	$3.4 \cdot 10^{2}$	$1.7 \cdot 10^{2}$	0.4	
30 m	0.786	$3.1 \cdot 10^{3}$	$1.3 \cdot 10^3$	$2.5 \cdot 10^2$	$1.2 \cdot 10^{2}$	0.3	
All	5.500	$2.3 \cdot 10^5$	$8.4 \cdot 10^4$	$8.8 \cdot 10^{3}$	$3.6 \cdot 10^{3}$	20.2	
Half PC	Half POTs on-axis						
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e	
0 m	2.750	$3.3 \cdot 10^{5}$	$1.2 \cdot 10^{5}$	$1.0 \cdot 10^{4}$	$4.0 \cdot 10^{3}$	29.6	
5 m	0.458	$4.2 \cdot 10^4$	$1.5\cdot 10^4$	$1.5 \cdot 10^3$	$5.4 \cdot 10^{2}$	3.7	
10 m	0.458	$1.9 \cdot 10^{4}$	$6.8\cdot 10^3$	$9.0 \cdot 10^2$	$3.6 \cdot 10^{2}$	1.6	
15 m	0.458	$8.5 \cdot 10^3$	$3.2\cdot 10^3$	$4.7 \cdot 10^2$	$2.3 \cdot 10^2$	0.7	
20 m	0.458	$4.6 \cdot 10^{3}$	$1.9\cdot 10^3$	$3.0 \cdot 10^2$	$1.5 \cdot 10^{2}$	0.4	
$25 \mathrm{m}$	0.458	$2.8 \cdot 10^3$	$1.2 \cdot 10^3$	$2.0 \cdot 10^2$	$9.7 \cdot 10^1$	0.3	
30 m	0.458	$1.8 \cdot 10^3$	$7.7 \cdot 10^2$	$1.4 \cdot 10^2$	$6.8 \cdot 10^1$	0.2	
All	5.500	$4.1 \cdot 10^{5}$	$1.5 \cdot 10^{5}$	$1.3 \cdot 10^{4}$	$5.4 \cdot 10^{3}$	36.5	

Conclusions [DUNE-doc-13262]

- Full simulations implemented
- Reconstruction tools partially ready
- Results confirm good performances of this composite compact multipurpose detector
- Significantly enhancement of the physics performance of ND complex
- Either on-axis or
- Easily movable in off-axis positions
- Precision measurements and new physics search, see ESG input: <u>https://indico.cern.ch/event/765096/contributions/3295805/</u>

ArgonCube Fiducial Volume

20