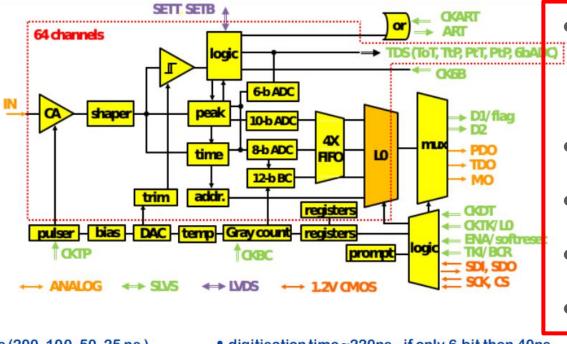
ECAL Readout Electronics Using the VMM3 ASIC

B.Kirby, G. lakovidis - BNL



VMM3 ASIC in STT Readout Overview

- The VMM3 ASIC is mature, widely used in HEP readout electronics
 - What is the VMM3 ASIC?
 - The VMM3 ASIC is well suited to the near detector STT readout
- VMM3 experience
 - ATLAS
 - Test Beams
 - Mu2e CRV CSC
- VMM3 readout R&D plan for the STT

VMM Architecture & highlights

- peaktime (200, 100, 50, 25 ns)
- gain (0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC)
- neighbor logic
- timing outputs
- both input charge polarity
- ~1700 bits of configuration with SPI

- digitisation time ~220ns if only 6-bit then 40ns
- large sensor capacitance mode control
- monitor multiplexing
- TAC slope adjustment (60, 100, 350, 650 ns)
- buffering latency FIFO up to 64 events, 16 deep fifo in readout (8b/10b encoding)

ASIC for a wide-variety of applications

VMM3 is a "Swiss-Army"

Outputs: digital Q+T

64 input ch / ASIC

Low power: < 10mW / ch

Compact readout

electronics

replaces a crate of

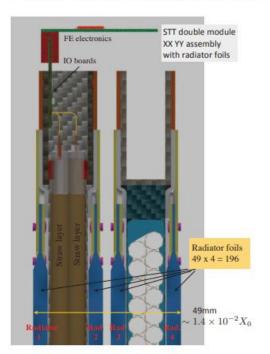
G. lakovidis, BNL

VMM Development

- mixed-signal
- 2-phase readout
- peak and timing
- neighbouring
- sub-hysteresis
- few timing outputs

- mixed signal
- continuous fully-digital readout
- · current-output peak detector
- · increased range of gains
- three ADCs per channel
- FIFOs, serialized data with DDR
- serialized ART with DDR
- additional timing modes
- 64 timing outputs
- ITAR
- · additional functions and fixes

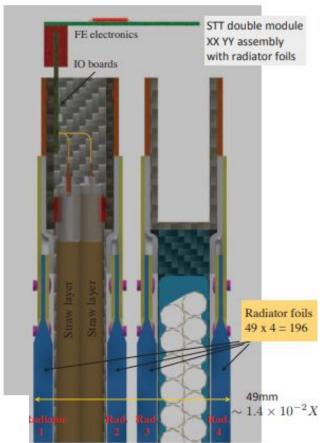
VMM3, the first prototype!
VMM3a - Production prototype, bug fixing


- · mixed signal + digital
- continuous simultaneous readout
- SEU-tolerant logic
- Deeply revised front-end for TGC (2nF, 50pC, fast recovery, ...)
- L0 handling digital core
- SLVS and new config. interface
- · new reset control and fast reset
- timing at threshold
- timing ramp optimisation
- pulser range extension
- ART synchronisation
- 32-channel skip
- additional functions and fixes

- Adjustable feedback currents
- Additional bug fixes
- Yield issues addressed

Focus on the Near Detector ECAL STT

- ♦ Precision EW & QCD measurements require control of ν -target(s) as in e^{\pm} DIS:
 - Massive ν detectors intrinsically limited by the knowledge of the target composition & materials;
 - Possible accurate control of target(s) by separating target(s) from active detector(s);
 - ullet Thin targets spread out uniformly within tracker by keeping low density $ho \sim 0.16$ g/cm 3
 - \Longrightarrow Straw Tube Tracker (STT) in $B\sim 0.6$ T with 4π electromagnetic calorimeter


◆ Radiator targets (100% purity) account for > 95% of STT mass and can be tuned to achieve desired statistics & resolutions.

Can the VMM3 read out this detector?

- ◆ Separation from excellent vertex, angular & timing resolutions.
- ◆ Radiators can be replaced by thin nuclear targets: C, Ca, Ar, Fe, etc.

R. Petti, USC

Near Detector ECAL STT Readout Requirements

Operating parameters:

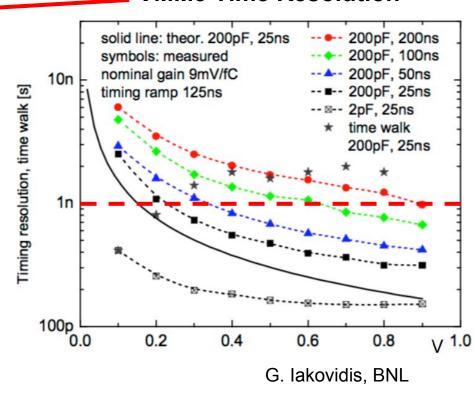
- Gas Xe/CO2 & Ar/CO2 (70/30), gain ~2x10^4;
- Straw diameter 5mm, max drift time ~60 ns;
- Max straw length 4m, wire 20 um diameter Au plated W;
- STT length 4m, tracking volume ~45m³;
- Common trigger: t=drift time+time of flight+propagation along wire.

Readout requirements:

- Measure deposited charge & time t;
- Timing resolution << 1ns;
- · Low threshold: charge from single ion pair;
- Dynamic range > 1000 on charge;
- · Max width of readout board: 5cm;
- * Max length of readout board: 16 cm every 64 channels for double readout

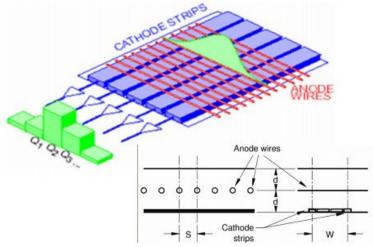
Double readout at both ends of straws:

- Measure longitudinal hit position along wire from direct time measurement
- Time difference between signals at 2 ends: time resolution < 250 ps.


VMM3 ASIC is a good readout solution for this detector!

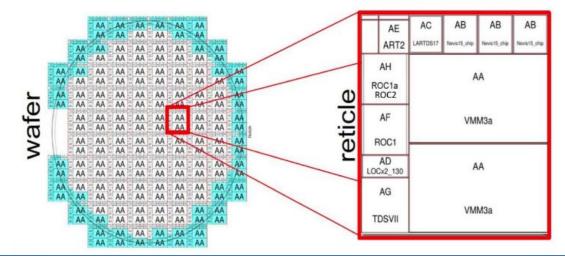
R. Petti, USC

VMM3 Meets ND STT Readout Requirements


- Readout requirements:
 - Measure deposited charge & time t;
 - Timing resolution << 1ns;
 - · Low threshold: charge from single ion pair;
 - Dynamic range > 1000 on charge;
 - · Max width of readout board: 5cm;
 - * Max length of readout board: 16 cm every 64 channels for double readout
 - VMM3 satisfies required <1ns timing
 - Measures Q + T for each input
 - Compact 64-ch ASIC well suited to ND spatial constraints inside magnet
 - Can satisfy STT readout width and length constraints

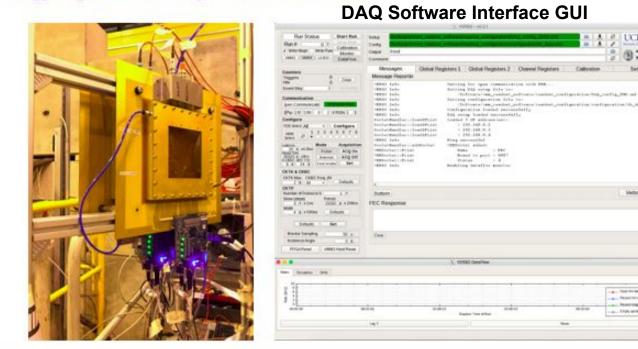
VMM3 Time Resolution

VMM ASIC and the ATLAS CSC



- · four-layer chamber
- anode wire pitch: 2.54 mm
- · cathode readout pitch: 5.08 mm
- position measurement based on charge interpolation
- · rms resolution: up to 60 um
- · time resolution: 7ns
- gas mixture: Ar-CO₂
- gas gain: 104
- number of chambers: 32
- number of readout channels:
 67,000
- area covered: 27 m²

Used VMM ASIC


VMM3a ASIC and the ATLAS NSW Upgrade

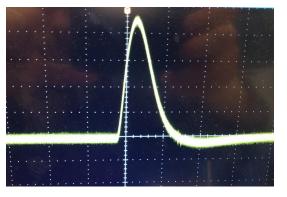
- VMM3a passed successfully the ATLAS Production readiness review on the 29th of October 2018 fulfilling the requirements of the New Small Wheel upgrade
- Reminder: New Small Wheel is composed of 2.4M readout channels used for trigger as well
 - Two detector technologies, Micromegas and sTGC, largest Phase I upgrade
- Production submitted beginning of 2019
 - 625 wafers which contains 113 chips per wafer Total production of 70625 VMMs!
 - Current yield of 72% on which the designing team is working with Global Foundries to optimise
- Production with leading 50 wafers starts delivery on May 2019

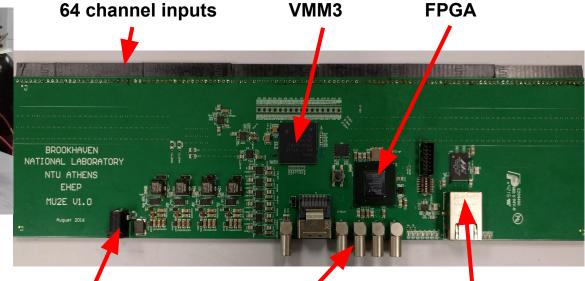
VMM3 ASIC and Micromegas Test Beam

- . VERSO (UCI/BNL) was used to readout the data and to control the frontends.
- Firmware was developed by BNL/NTUA, version to control the CKBC which allowed precise timing measurements along with ART measurements.
- . Common trigger to all the system provided by scintillators. This is a control signal for the VMM TAC.
- On the VMM3a setup, data were taken on L0 mode as well, analysis is ongoing
- The trigger signal was readout by VMM3/3a on channel #63


Perpendicular Track Residuals ResolutionCentroid \$45000 E Resol. Core a = 67 µm -0.01438Mean Resol. Double a = 103 um 40000 Std Dev 880.6 / 44 ₹35000 4.08e+04 ± 1.02e+02 30000 -0.01327 ± 0.00017 0.09422 ± 0.00025 4152 = 90.1 25000 -0.02589 ± 0.00101 VMM3a 0.2566 ± 0.0025 20000 -15000 10000 5000 -0.4 Residuals [mm]

G. lakovidis, BNL


VMM3 Readout for the Mu2e CRV CSC Test Stand

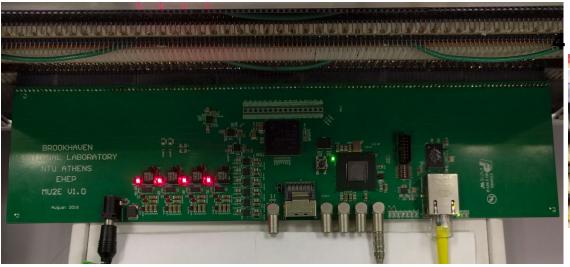

LV input

CSC at BNL

Example Calibration Pulse

Prototype CSC VMM3 Readout Board

 Compact VMM3 based readout board developed for Mu2e Cathode Strip Chamber (CSC) test stand


IO / Analog Monitor

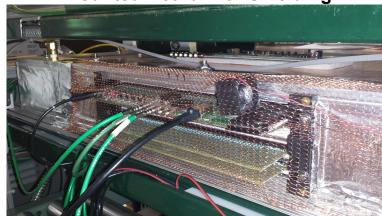
Ethernet connector

FPGA-based readout allows flexible DAQ integration

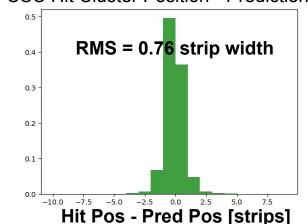
VMM3 Readout Board on Mu2e Test Stand CSC

VMM3 Board on CSC Top View

VMM3 Boards Mounted on CSC


- Each VMM3 board reads out one Mu2e CSC layer
 - Chamber has 8 layers total, 4 each for X+Y
 - o 75-20 Ar-C0₂ gas mixture, ~3kV bias
- Row of 64 female sockets give good contact to cathode pins, reduces noise
- Good starting point for STT readout, similar ~5cm spacing

CSC Test Stand at UVa for Mu2e CRV Module Validation



- 32 VMM3 readout boards produced for Mu2e CRV scintillator module test stand
- Good test stand for VMM3-based readout
- Preliminary position resolution meets expectation

Mounted Board with Shielding

CSC Hit Cluster Position - Prediction

STT Readout Research and Development Plan

- Propose using VMM3a-based readout for STT
- Year 1:
 - Evaluate VMM3-based readout with straw tube tracker detector
 - Construct dedicated electronics test stand with straw tubes
 - Identify potential revisions to ASIC to improve performance
 - Initial design of prototype electronics based on Mu2e CSC boards

Year 2:

- Evaluate prototype electronics performance, identify any further ASIC or board revisions
- Preliminary design of detector + readout integration in near detector
- Technical design of detector electronics

Year 3:

- Demonstrate performance of VMM3 electronics and STT in low energy test beam (CERN)
- Full technical design of STT detector + readout

Summary

- VMM3 is a compact, flexible ASIC well matched to frontend electronics requirements of near detector STT
 - Demonstrated time resolution better than 1ns and ability to measure energy deposit
 - Applied successfully in multiple detectors (ATLAS, Mu2e CRV test stand shown here)
 - Readout, DAQ and associated software already developed
 - Costs understood from previous productions
- Current CSC test stands at BNL+ UVa is excellent evaluation platform for VMM3
 ASIC readout and potential improvements
 - Will evaluate performance of VMM3a with CSCs in near future
- Can adapt VMM3 readout to STT quickly
 - Proposed R&D plan including test beam to demonstrate readout meets requirements
- VMM3a is flexible and can be used in other near detector readouts