ν_{τ} Appearance: the NOMAD Experience

R. Petti

University of South Carolina, Columbia SC, USA

DUNE ν_{τ} and High Energy Beam Working Group February 21, 2019

THE NOMAD DETECTOR

Multi-purpose electronic detector:

- Low-density tracking: $\rho \sim 0.1 \text{ g/cm}^3$ $\implies \delta p/p \sim 3.5\% \text{ (}p < 10 \text{GeV/}c, B = 0.4T\text{);}$
- **I** Fine-grained calorimeter $\Rightarrow \sigma(E)/E = 3.2\%/\sqrt{E[\text{GeV}]} \oplus 1\%;$
- $\begin{array}{l} \textbf{III} \quad \textit{Excellent lepton identification} \\ \& \ \textit{charge measurement} \\ \implies \textit{Can detect } \overline{\nu_{\mu}, \nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e}} \ \textbf{CC} \end{array}$

Missing transverse momentum

NOMAD Coll., NIM A 404 (1998) 96

Roberto Petti

THE NOMAD u_{τ} SEARCH

• Explicitly designed to search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in the CERN SPS wide band neutrino beam at $L \sim 620$ m

• APPEARANCE experiment. ν_{τ} is detected by CC interactions $\nu_{\tau} + N \longrightarrow \tau^{-} + X$

INDIRECT τ identification throught its secondary visible decay products:

$$\tau^{-} \longrightarrow \begin{cases} e^{-}\bar{\nu}_{e}\nu_{\tau} & 17.8\% \\ h^{-}(n\pi^{0})\nu_{\tau} & 49.8\% \\ \pi^{-}\pi^{-}\pi^{+}(n\pi^{0})\nu_{\tau} & 15.2\% \end{cases}$$

$$\overline{Total} \qquad 82.8\%$$

◆ The signal is extracted from the tails of the background distributions by means of
 KINEMATIC CRITERIA

 ⇒ ε_τ ~ 1 ÷ 4%, ε_{BKG} ~ 10⁻⁴ ÷ 10⁻⁶.

◆ NOMAD also searched for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

 NOMAD is a detector suitable for general neutrino physics (a kind of "electronic bubble chamber")

IDENTIFICATION OF ν_{τ} EVENTS

I Rejection of ν_{μ} (ν_{e}) Charged Current:

LEPTONIC CHANNELS

Main background source:

⇒ Kinematics based on momentum balance and angular relations in transverse plane

HADRONIC CHANNELS

 Background from events where the leading muon is not identified:
 ⇒ Muon & electron veto -Muon and electron ID in detector, geometrical acceptance;

 \implies Kinematics in transverse plane (looser).

- Direction of imbalance: angle between lepton and hadronic jet transverse momenta Φ_{lh} angle between missing and hadronic jet transverse momenta Φ_{mh} ratios of transverse momenta $\rho_i \equiv P_T^i / \sum_i P_T^i$
- Transverse mass $M_T = \sqrt{(|P_T| + |P_T^l|)^2 (P_T^{Jet})^2}$

II Rejection of ν_{μ} (ν_{e}) Neutral Current:

HADRONIC CHANNELS

Largest background contribution:

 \implies Isolation conditions between the τ visible decay product(s) and the hadronic jet.

LEPTONIC CHANNELS

Wrong particle ID, genuine decays $(h^- \to e^-, \pi^0 \to \gamma e^+ e^- \text{ etc})$: \implies Lepton identification;

 \implies Isolation with respect to the hadronic jet (looser).

- Momentum component of the τ visible decay products perpendicular to the visible momentum $Q_T = \sqrt{(\vec{P}_{h^-})^2 (\vec{P}_{h^-} \cdot \vec{P}_{tot})^2/P_{tot}^2}$
- Opening angle between the τ visible decay products and any other charged track $\theta_{iso} = \arccos(\vec{P_l} \cdot \vec{P}_{h_i} / P_l P_{h_i})$

III Signal $\nu_{\tau}CC$ has intermediate properties between CC and NC backgrounds:

Difficult to reject efficiently both background sources with simple kinematic criteria \implies opposite requirements.

♦ Visible τ decay product(s) ⇒ $Q_T(\nu_τ CC) > Q_T(\nu NC)$ P_T from large τ mass ⇒ $Q_T(\nu_τ CC) < Q_T(\nu CC)$

ANALYSIS & EVENT SELECTION

• FULL TOPOLOGY of visible final-state particles \implies Exploit complete set of $X_{i=1,N}$ kinematic variables

- ◆ Definition of probability density functions, pdf L, for the given set X_i, to be signal (L_S) or background (L_B).
 ⇒ approximations to extract L_S and L_B from MC.
- The global pdf L is subdivided into n-dimensional partial pdf's with n < N and n = 1, 2, 3, 4, chosen among the most discriminating internal CORRELATIONS of X_i:
 - Can use product of the chosen n-dimensional partial pdf's $P_n(X_i)$:

$$\mathcal{L} = \prod_{i=1}^{N} P_n(X_i) \quad P_n(X_i) \equiv [X_1, ..., X_n]$$

• Residual correlations among partial pdf's can also be considered:

$$\mathcal{L} = [\mathbf{P}_{\mathbf{n}}, X_{n+1}, ..., X_N]$$

Event classification based on LIKELIHOOD RATIO between the signal S and background(s) B hypotheses:

$$ln \lambda \stackrel{\text{def}}{\equiv} ln \frac{\mathcal{L}_S}{\mathcal{L}_B}$$

BACKGROUNDS & EFFICIENCIES

Final estimate corrected by Data Simulator:

 The large kinematical suppression and the use of likelihood ratios exploiting multi-dimensional correlations require a precise knowledge of the relevant distributions down to a ~ 10⁻⁴ ÷ 10⁻⁶ level. Not possible to rely entirely on the Monte Carlo (LEPTO/JETSET/GEANT) predictions (MC):

◆ The three samples MC, MCS and DS are fully analyzed and the background and signal efficiencies are estimated from the DOUBLE RATIO $\varepsilon \stackrel{\text{def}}{\equiv} \frac{\varepsilon(MC) \times \varepsilon(DS)}{\varepsilon(MCS)}$ $\implies \text{essentially LEPTON from MC & JET from DATA.}$

 Final background predictions must agree with data in τ⁺ search where no detectable signal is expected. This comparison validates the Data Simulator corrections.

- Most sensitive decay channel in NOMAD ν_τ appearance search: large inclusive BR 49.8% & additional handles from internal structure of ν_τ candidate.
- ✤ Unified approach with 3 different (inclusive) decay topologies:
 - 0γ : τ candidate built from single π^- ;
 - 1γ : $\tau^- \rightarrow \nu_\tau \rho^- \rightarrow \nu_\tau \pi^- \pi^0$. Single γ reconstructed from π^0 (2 γ overlap or missed γ);
 - 2γ : $\tau^- \rightarrow \nu_\tau \rho^- \rightarrow \nu_\tau \pi^- \pi^0$. Both γs from π^0 decay are reconstructed.

♦ Kinematic selection requires 4 steps on event-by-event basis:

- (i) Choice of the most likely τ decay products;
- (ii) Choice of the most likely "leading lepton" candidate;
- (iii) Rejection of CC backgrounds;
- (iv) Rejection of NC backgrounds.

NOMAD Coll., NPB 611 (2001) 3-39

Roberto Petti

I Choice of τ decay products:

- In general, for a given event more than one choice/combination possible
- Define the selection likelihood function:

 $\mathcal{L}^{\mathrm{S}} \stackrel{\mathrm{def}}{\equiv} [(\mathcal{L}^{\mathrm{IN}}), R_{Q_T}, y_{Bj}, \theta_{\tau H}]$

$$\mathcal{L}_{1\gamma}^{\mathrm{IN}} \stackrel{\mathrm{def}}{\equiv} [M_{\rho}, \theta_{\pi^{-}\pi^{0}}, E_{\pi^{0}}/E_{vis}], \qquad 1\gamma$$
$$\mathcal{L}_{2\gamma}^{\mathrm{IN}} \stackrel{\mathrm{def}}{\equiv} [M_{\pi^{0}}, \theta_{\gamma\gamma}, E_{\gamma}^{max}/E_{vis}], \mathcal{L}_{1\gamma}^{\mathrm{IN}}], \quad 2\gamma$$

- Select the combination maximizing the likelihood ratio between correct and random choices in τ decays.
 - \implies Build ν_{τ} CC event kinematics around the selected τ candidate

II Choice of "leading lepton" candidate:

• Select kinematically the track most likely consistent to be an unidentified μ in ν_{μ} CC

Define the tagging likelihood function:

$$\mathcal{L}^{\mathrm{V}} \stackrel{\mathrm{def}}{\equiv} [R_{Q_T}, p_T^l, \theta_{\nu l}]$$

- Select the track maximizing the likelihood ratio between correct and random choices in unidentified ν_μ CC events.
 - ⇒ Build entire CC event kinematics around the selected "lepton" track

III Rejection of **CC** backgrounds:

 $\theta_{\nu l}$ Angle between lepton and beam axis;

 R_{p_T} Ratio between p_T of lepton and p_T^m ;

R_{QT} Ratio between transverse size of hadronic system with and without lepton;

 E_{vis} Total visible energy in the event;

 M_T Transverse invariant mass between p_T of τ candidate and p_T^m ;

 $\mathcal{L}^{\mathrm{CC}} \stackrel{\mathrm{def}}{\equiv} [[R_{Q_T}, R_{p_T}, \theta_{\nu l}], E_{\mathrm{vis}}, p_T^m, M_T]$

IV Rejection of NC backgrounds:

 $\theta_{\nu H}$ Angle between the direction of the incident ν and the hadronic jet momentum;

 θ_{iso} Minimum opening angle between the electron and any other track in the hadronic system;

 p_T^m Missing p_T .

$\mathcal{L}^{\mathrm{NC}} \stackrel{\mathrm{def}}{\equiv} [[[\theta_{\nu T}, \theta_{\nu H}], \theta_{iso}, Q_T], p_T^m, p_T^H]$

 $\begin{array}{c} {\rm no\ cuts\ on} \\ {\ln \lambda^{\rm NC}\ and\ \ln \lambda^{\rm IN}} \end{array}$

 $\begin{array}{c} \text{moderate (x10)} \\ \ln \lambda^{\text{NC}} \text{ cut} \\ \text{no} \ln \lambda^{\text{IN}} \text{ cut} \end{array}$

 $\ln \lambda^{\rm IN} \, {
m cut} \, ({
m signal}) \ {
m no} \, \ln \lambda^{
m NC} \, {
m cut}$

Likelihood functions crucial to define control samples to validate NC & CC backgrounds

no $\ln \lambda^{CC}$ cut

 $\ln \lambda^{\rm CC}$ cut

Reduction of background systematics from multiple NC & CC control samples (redundancy)

Analysis		τ-		$ au^+$		$\epsilon_{\tau}(\%)$	$N_{ au}^{\mu au}$	$N_{ au}^{e au}$	$S_{\mu au}$
		Obs	Tot Bkgnd	Obs	Tot Bkgnd				$(\times 10^{-4})$
$v_{\tau} \bar{v}_e e$	DIS	5	$5.3^{+0.7}_{-0.5}$	9	8.0 ± 2.4	3.6	4318	88.0	8.0
$v_{\tau}h(n\pi^0)$	DIS	21	19.5 ± 3.5	44	44.9 ± 4.6	2.2	7522	177.4	4.0
$v_{\tau} 3h(n\pi^0)$	DIS	3	4.9 ± 1.5	10	9.9 ± 1.6	1.3	1367	33.3	22.2
$v_{\tau} \overline{v}_e e$	LM	6	5.4 ± 0.9	3	2.2 ± 0.5	6.3	864	8.8	55.2
$v_{\tau}h(n\pi^0)$	LM	12	11.9 ± 2.9	40	44.1 ± 9.2	1.9	857	16.7	88.9
$v_{\tau} 3h(n\pi^0)$	LM	5	3.5 ± 1.2	1	2.2 ± 1.1	2.0	298	5.2	161.0

Final NOMAD results [NPB 611 (2001) 3-39]

ŀ	Analysis		Bin #	Tot Bkgnd	Data	$N^{\mu au}_{ au}$	$N_{ au}^{e au}$
$v_{\tau} e \bar{v}_{e}$	DIS		III	$0.18\substack{+0.18 \\ -0.08}$	0	680	15.0
			VI	0.16 ± 0.08	0	1481	32.7
$(E_{\rm vis})$	< 12 Ge	V)	II+III+VI	0.27 ± 0.13	0	665	8.7
$v_{\tau}h(n\pi^0)$	DIS	0γ	III	$0.05\substack{+0.60\\-0.03}$	0	288	6.9
		0γ	IV	$0.12\substack{+0.60 \\ -0.05}$	0	1345	31.1
		1γ	III	$0.07\substack{+0.70 \\ -0.04}$	0	223	5.7
		1γ	IV	$0.07\substack{+0.70 \\ -0.04}$	0	1113	26.6
		2γ	IV	$0.11\substack{+0.60\\-0.06}$	0	211	4.9
		$1/2\gamma$	III	$0.20\substack{+0.70 \\ -0.06}$	1	707	16.9
		0/1–2 <i>γ</i>	IV	$0.14\substack{+0.70 \\ -0.06}$	0	1456	34.2
$v_{\tau} 3h(n\pi^0)$	DIS	3 <i>h</i>	V	$0.32_{-0.32}^{+0.57}$	0	675	16.6
	$1.69^{+1.85}_{-0.39}$	1	8844	199.3			

Most of the NOMAD sensitivity from low background regions/bins

THE NOMAD EXPERIENCE

- NOMAD pioneered the use of transverse plane kinematics for the selection of various exclusive (anti)neutrino processes.
 - \implies Efficient technique with low-density high-resolution detector.
- The NOMAD experience demonstrated that the kinematic selection of ν_{τ} CC can be controlled up to the extreme tails of the distributions:
 - Need to extract & calibrate all efficiencies and backgrounds with data themselves;
 - Optimal use of degrees of freedom with multi-dimensional (correlations) pdfs;
 - Definition of multiple control samples to validate each beckground source (redundancy);
 - Combination of lepton (μ, e) ID & kinematics.
- Kinematic techniques originally developed for ν_τ appearance search extended to broad range of analyses including NC indentification, measurement of exclusive cross-sections & particle production, etc.

[e.g. NOMAD Coll., NPB 700 (2004) 51]

- NOMAD kinematic selection of v_τ CC can be useful in DUNE for both FD & ND once adapted to the different detector and beam conditions.
 ⇒ Less critical S/B ratio in FD but lower resolution detector
- Recent proposal to European Strategy Group for Particle Physics to enhance LBNF/DUNE physics potential with addition of highly capable ND component:

https://indico.cern.ch/event/765096/contributions/3295805/

- Low-density ($\rho \sim 0.16 \text{ g/cm}^3$) high-resolution spectrometer based upon NOMAD concept;
- General ND facility for precision tests of fundamental interactions & searches for New Physics;
- Option of LBNF high-energy beam optimized for ν_{τ} appearance crucial part of physics program.
- Kinematic techniques similar to NOMAD applied to various sensitivity studies in proposed ND addition (e.g. H. Duyang, B. Guo, S. R. Mishra, and RP, arXiv:1809.08752 [hep-ph]).
- Proposed ND addition excellent detector option for ν_{τ} search in ND (higher segmentation than NOMAD) related to sterile neutrinos (e.g. MiniBooNE), non-standard interactions, etc.

 $\mathcal{L}^{\mathrm{H}} \equiv \left[\left[R_{mH}, p_{T\perp}^{H}, \theta_{\nu T} \right], p_{T}^{m}, \Phi_{lH} \right]$