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Abstract
The work described in this proposal will result in an improved understanding of cosmic acceleration
and a paradigm shift in computational techniques through the use of statistical learning algorithms.
This proposal supports measurements of cosmic acceleration from current and future data-intensive
cosmological surveys, like LSST and CMB-S4. To address the growing size and complexity of imaging
data from these experiments, we will develop and implement physics-aware deep learning analysis
techniques for the extraction of science at multiple analysis levels — from object identification to
inference of cosmological parameters.

Motivation: Cosmic science in the era of data-intensive experiments
Modern surveys have great promise to uncover a new understanding of cosmic acceleration, but
we lack the modeling tools to take advantage of increasingly rich data sets. New algorithms and
modeling methods based on statistical machine learning, but including the power of conventional
parametric modeling, will be the key to realizing the potential of future cosmic surveys.

The goal of cosmic survey experiments is to model the origins, evolution, and fate of the
universe. Indeed, HEPAP calls out cosmic acceleration as one of the key intertwined science
drivers for the cosmic frontier [6]. Late-time acceleration is thought to be driven by dark energy,
which is parameterized by the time-varying equation of state, w(t). Early-universe acceleration
is theorized to be driven by inflation, whose parameter of interest is the scalar-to-tensor ratio, r.
These parameters must be inferred through observations of cosmic probes, which act as tracers
of spacetime. The probes are themselves modeled from the raw imaging data acquired through
next-generation telescope experiments: LSST in optical wavelengths and CMB-S4 in the microwave
regime aim to constrain late- and early-time acceleration, respectively.

Challenges in modeling cosmic probes from imaging data necessarily drive challenges in modeling
cosmic acceleration for these surveys. The sensitivity and size of cosmic experiments drive the size
and complexity of their data, which conventional algorithms are not prepared to handle. LSST
will acquire enormous data sets with billions of objects, seeing more objects than ever before. For
example, ∼ 150, 000 strong gravitational lensing systems (two orders of magnitude beyond all current
data sets combined) are expected to be discoverable in LSST data, but current analysis methods
that rely on human intervention will require too much time. Not only will finding these needles
in a haystack be a critical challenge, but analyzing them can take up to a day of human effort to
create a model for a single object. The unprecedentedly high-resolution and low-noise CMB-S4 data
will have contaminants, like weak gravitational lensing that prohibit new constraints on r. The
Quadratic Estimator (QE), a conventionally parameterized model, is the current state of the art for
“de-lensing“ the CMB signal, but has been shown to be insufficient for future survey data [8].

Conventional algorithms, like those described above rely on physical parameterizations, where
the parameters describe and account for the physically interpretable features that humans have
identified. However, these types of models can and do miss critical features that have not been
explicitly parameterized and identified by humans. On the other hand, deep learning algorithms
can learn key features from the data itself, features that are not explicitly parametrized. In recent
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years, deep learning has made significant strides in applications in society and science, including in
astrophysics and cosmology. Strong lens finding and modeling has been accelerated by deep learning
algorithms, improving the modeling time by a factor of one million [7]. While this demonstration
was carried out on space-based data from the Hubble Space Telescope, our group has developed an
algorithm that can work on ground-based data [4]. For the task of removing the contaminating
weak lensing signal from CMB data, our team implemented a neural network that outperforms the
QE by 50 − 70% across a wide range of spatial scales [3].

I have been leading teams in analysis of strong lensing, the CMB, and deep learning for three
years. In particular, I have been leading the DES Strong Lensing Working Group and have founded
the Deep Skies Lab, a collaboration for deep learning in astrophysics. My experience in uniting
collaborators from data science and cosmology to attack the key problems in the cosmic frontier
makes me uniquely suited to lead this proposal.

Goals and objectives: Understanding cosmic acceleration
The ultimate goal of this proposal is to achieve a new understanding of cosmic acceleration. The
objectives that will enable us to achieve this goal are 1) enhanced efficiency and flexibility of modeling
algorithms; 2) more effective models of complex imaging data and astrophysical objects; and 3)
improved accuracy and precision of cosmological models. These objectives form a short hierarchy,
such that one enables the next. In achieving these objectives, we will solve specific critical-path
analysis challenges for modern cosmic surveys. The successful completion of these objectives forms
a proof of concept that will pave the way for advancements in computational frameworks across
cosmic experiments and enable the discovery and construction of new cosmological models.

Deliverables: From software to science
To achieve these objectives, we will deliver new scientific measurements, enhanced data products,
and improved software tools for the age of data-intensive cosmic experiments. First, (1) we will
create and release refined data products (e.g., catalogs of images and objects) derived from raw
imaging data through our deep learning analysis engine. In optical wavelengths, we will create highly
complete and pure catalogs of strong lenses, despite their relative scarcity and without the need for
intensive human visual inspection. We will also create them in time to take advantage of transient
objects, like lensed supernovae, for which follow-up observations will be crucial. At microwave
frequencies, we will clean cosmic microwave background images of noise and contamination, like
thermal dust signatures and gravitational lensing. Second, (2) we will use the object and imaging
catalogs in standard cosmological parameter analysis tools to derive new constraints on cosmic
acceleration for the early and late universe. Finally, (3) we will release an open-source software
framework built on industry-standard deep learning toolkits. The deep learning algorithms in this
framework will be enhanced to solve the current problems facing their application to science data.

While the two kinds of derived data products may appear highly disparate due to their different
spatial scales, a key insight is that deep learning models handle these data structures with equivalent
efficiency and accuracy, regardless of spatial scale. The computational framework will be constructed
to take advantage of this feature of deep learning algorithms.

A new approach: statistical deep learning algorithms
To produce the deliverables, we propose to develop analysis techniques based on deep learning
algorithms and to demonstrate their efficacy on key problems for cosmic surveys.

Algorithm development begins with well-tested deep neural network architectures, using super-
vised learning for optimization. For classification and regression of individual objects, we start with
Residual and Inception architectures, which have exhibited the greatest efficiency and accuracy
to date. For image analysis on large scales — like noise removal — we start with self-supervised
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networks, like autoencoders and u-nets. Finally, generative adversarial networks have proven highly
versatile both for image segmentation and noise-removal, so these will be explored as well.

We will develop and improve the algorithms and models through an iterative process of testing
on perfectly understood simulated data and real-sky data. We first train and test the model on
simulated data, then predict on real-sky data in regimes where we already know the correct answer
from conventional techniques and analyses. We will then augment the simulated training samples to
include features required for accurate modeling of the real-sky data. This iterative cycle is standard
for the development of models with deep learning algorithms.

We propose to implement a number of key innovations to overcome challenges in the application
of neural networks to scientific data. We will develop an active learning mechanism that automates
the iterative model-tuning cycle by using the differences between the simulated and real-sky data to
automatically produce new simulations for training. Another key innovation will be the incorporation
of physical parameters into the deep learning model. This performs a kind of regularization that
will allow the algorithm to optimize the model more quickly and more accurately. Finally, we will
implement a mechanism to propagate uncertainties through the deep learning model to obtain
physically interpretable error bars on the final measurement. Bayesian neural networks [9] and the
method of Concrete Dropout [5] offer the best avenues for implementing uncertainty measurement.

Deep learning algorithms require a large and diverse set of examples for effective training. For
these training sets, we will create simulated data sets with currently available software, and then
further develop the simulation software to accommodate the needs of the learning algorithm. For
strong gravitational lens simulations, we will start with Lenstronomy [2], and for CMB simulations,
we start with Monte Carlo simulations of the primary CMB and apply gravitational lensing with
Quicklens [1] and other foregrounds with PySM [10].

The success of our algorithms for creating new models will be assessed through a) the speed of
the inference process when applied to data; b) the accuracy and generalizability of the models in
representing complex real-sky data; and c) the factors of improvement on figures of merit for cosmic
acceleration parameters. Our three key innovations in the development of deep learning algorithms
will be required to achieve these objectives.

Potential for impact: A new paradigm of cosmic data analysis
The desired results of this proposal are to enable discovery science next-generation cosmic surveys
and to revolutionize analysis techniques for data-intensive cosmic survey experiments. If successful,
it would not only provide a new understanding of cosmic acceleration, but significant time and cost
decreases in our analyses of imaging data. The long-term impact also includes the solution of key
challenges for the application of deep learning to science problems — incorporating existing physics
knowledge and statistical measures of uncertainties into statistical deep learning models.
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