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The discovery of the Higgs boson is a triumph for the field of particle physics and completes
the Standard Model (SM). Despite the Higgs discovery, fundamental questions about our universe
remain such as the nature of dark matter, the hierarchy problem, and the matter-antimatter asym-
metry. Proposed solutions to these problems can be addressed by exploring new physics coupled
to the Higgs boson – the so-called Higgs portal. This proposal uniquely probes the Higgs portal
by exploring its behavior in extreme parts of phase space highly sensitive to new physics contribu-
tions. Further, this proposal will explore solutions to outstanding big data computing challenges at
the Large Hadron Collider (LHC) which are applicable to many high energy physics experiments.
Computing resources will not scale to meet future needs of the LHC and new innovative paradigms
are needed. The catalyst for this research program is deep learning techniques which extend our
physics sensitivity and improve our computational efficiency by large factors. The proposal con-
sists of two main aspects: expanding and improving searches for new physics via anomalous Higgs
boson couplings at high transverse momentum pT with the CMS experiment at the LHC; and
accelerating computationally-heavy simulation and reconstruction algorithms through new deep
learning computing paradigms that fit well with the HEP distributed computing standard.

I. BOOSTED HIGGS

In the current LHC era, since the discovery of the Higgs boson, it is important both to use
the Higgs boson as a lamppost and to unearth hidden possible signatures of new physics. The
PI has recently pioneered conceptually novel methods to study the Higgs [1] (gg → H → bb̄) and
search for light hidden hadronic dark sector particles [2] (light Z ′ → qq). The key to both is
to search for highly boosted, highly collimated particle jet signatures underneath overwhelming
SM backgrounds. These seminal searches marked the beginning of a completely new physics
program at the LHC. One of the keys to this program is jet substructure methods which are used
to classify these interesting physics signatures.The PI will expand and accelerate this emergent
physics program to unlock new initial and final states by deploying deep learning methods that are
well-suited to these complex, high-dimensionality jet substructure classification tasks.

The original analysis deployed a tagging method that used traditional Boosted Decision Tree
multivariate methods to identify the Higgs to bb̄ candidate. However, newer tagging methods using
deep learning techniques developed by the PI and his team have been developed which demonstrate
both a significant performance improvement and the ability to distinguish H → bb̄ and H → cc̄ [3].
With these new methods, we plan to achieve 3σ evidence for the boosted Higgs to bb̄ signature
and pioneer a first search for the boosted H → cc̄ process at the same time. The measurement of
the Higgs coupling to charm quarks, H → cc̄, is a largely experimentally unconstrained coupling
but theoretically well-known and therefore could be a place where new physics could be lurking.
Our goal is to improve on current limits which are at 100 times the Standard Model prediction.
Additionally, we plan to observe the Z → cc̄ process in a single jet for the first time at the LHC.
This observation would be a major milestone in proving the viability of the technique to identify
H → cc̄.



2

Exploring the Higgs boson produced at very high pT is not simply a measurement program, but
a unique and very sensitive probe of new high scale physics contributions to the Higgs boson [4]. For
example, the dominant gluon fusion production mode is the most sensitive way to explore new heavy
particles coupling to the Higgs-top coupling loop through large deviations to the SM expectation
as the Higgs pT spectrum increases. Further, by selecting on the production mode of the boosted
Higgs, we can also probe different anomalous couplings to the Higgs and do a full taxonomy of
the boosted Higgs kinematics to disentangle the source of potential new physics contributions. For
example, from previous work by the PI, the V H associated production and vector boson fusion
production channels at very high pT have been shown to have powerful sensitivity to small CP
violating Higgs couplings [5]. Through deep learning extensions of the boosted Higgs program
and differentiation of the Higgs production mode, we can achieve unprecedented sensitivity to the
Higgs in an extreme part of phase space as a powerful probe of new physics couplings to the Higgs.
The evolution of this program on the timescale and dataset of LHC Run 3 will be a very exciting
period. We plan to demonstrate, for the first time, evidence of boosted H → bb̄ in potentially
multiple production channels, and an observation of the Z → cc̄ process in a single jet.

II. DEEP LEARNING ACCELERATION

The LHC and CMS are simultaneously preparing for a high luminosity HL-LHC upgrade, start-
ing in the mid-2020s, with increasing collision rates and extremely complex environments. Datasets
will grow by a factor of 50 during the HL-LHC era. Further, detectors will have up to 10 times
more readout channels and information and the collision environment complexity will increase with
5 times more instantaneous luminosity. At the same time, our computing capabilities cannot scale
to meet these demands as single CPU performance has stalled from the breakdown of Moore’s Law
and Dennard Scaling. Industry solutions to these big data challenges involve a large investment in
heterogeneous computing deploying specialized coprocessor hardware in which traditional CPUs
are coupled to more efficient computational hardware such as GPUs (NVidia), FPGAs (Microsoft,
AWS, Intel), and ASICs (Google, Apple). At the core of the new hardware solutions is an em-
phasis on deep learning algorithms and instruction sets. The literature on specialized hardware
has demonstrated factors of 50-100 speedup over CPUs. In this sense, machine learning becomes
a universal language in which to express algorithms that can be implemented on more efficient
computing platforms.

The key to the revolution in HEP is two-fold: first, migrating traditional physics algorithms
into machine learning algorithms and second, integrating specialized hardware into the HEP com-
puting model in a feasible way. The first aspect dictates that our most computationally challenging
problems are explored with machine learning algorithms – large scale detector simulation and algo-
rithms such as tracking and clustering. Efforts are on-going in this direction (TrackML challenge,
the HepTrkX/ExaTrkX effort, Generative Algorithms on physics simulation) including an effort
by the PI to apply geometrical deep learning to generic clustering tasks. The second aspect is
less explored in HEP and the focus of this proposal. The PI leads a pioneering effort [6] in this
direction to explore how to optimally integrate heterogeneous computing into HEP. It builds on
his expertise using FPGAs and ASICs for ultrafast event processing in the CMS trigger system [7].
The HEP computing model relies on globally-distributed (grid) computing built on a wide va-
riety of computing hardware, and it will be very challenging and costly to require coprocessors
at every experimental computing center. By exploring industry tools from Xilinx, AWS, Google,
and Microsoft, a first proof-of-concept studies has been performed to demonstrate the viability
of heterogeneous computing as a web service where deep learning inference can be off-loaded to
dedicated cloud resources in an efficient way.
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This research program proposes to build off these promising studies to explore the challenges
in scaling this approach to the HEP computing scale. There are three aspects to be studied in this
program to demonstrate the viability of this approach. First, the proof-of-concept studies need to
be extended to work on the scale of a computing farm and the worldwide grid. We will quantify
the scalability of costs, bandwidth and computing resources is important to contrast against more
traditional computing architectures. Second, because this is relatively new technology, we need to
explore how industry software tools develop to match HEP needs. For example, we will work on
generically translating HEP-style deep learning algorithms to specialized hardware. There are new
tools coming on the market and our studies can provide valuable feedback in the development of
these tools. Finally, the third aspect is the translation and development of the HEP algorithms into
machine learning algorithms. This proposal will couple closely with the PI’s work on developing
for generic clustering algorithms by translating those onto specialized hardware.

This research program is well-suited to the varied and broad expertise at Fermilab. The Sci-
entific Computing Division includes many core originators and developers of software frameworks
used by many neutrino experiments and the CMS experiment. They will be key in understanding
the challenges to interface heterogenous hardware with experimental software and developing the
necessary tools. To scale up these tools, additional computing experts on grid and distributed
parallel computing will be invaluable. For the specialized hardware translation, electrical engi-
neering will be required to continue developing machine learning algorithms on specialized chips
and understand the limitations of various technologies. It is the combination of machine learning
expertise, also a great resource at Fermilab, electrical engineering, core software development, and
large scale computing resources and experts which make Fermilab the ideal place to execute this re-
search program. The goal of this proposal is to understand the landscape of available deep learning
technologies, including their fully integrated computing pipeline, and how they are best integrated
into the current and future HEP computing paradigms. Improving our computing efficiency by
large factors is the only way we will be able to sustain the simulation, reconstruction, and analysis
of HL-LHC data as we move to exabyte scale datasets and all available options must be explored.
The lessons learned for the LHC will have a very large impact on the way that computing evolves
for other big data experiments such as DUNE.

III. OUTLOOK

In a post-Higgs-discovery era, the PI proposes a high impact research program that deploys deep
learning to uniquely explore the Higgs portal and daunting computing challenges. The program
includes an emerging suite of boosted Higgs measurements at the LHC enhanced by new final states
using deep learning and the exploration of deep learning-dedicated hardware to solve future looming
HEP computing challenges. Due to the impactful groundwork laid by the PI, the expertise that
has been developed, and a broad range of Fermilab expertise in distributed computing, software,
and electronics, this program is one that the PI is uniquely qualified to execute.
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