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The current and future programs for accelerator-based neutrino detectors feature the use of 
Liquid Argon Time Projection Chambers (LArTPCs) as the fundamental detection 
technology. These detectors combine high-resolution imaging and calorimetry to allow for 
the identification of charged particles and the reconstruction of neutrino interactions to 
neutrino energies at 10 MeV or below. However, the volume of data from LArTPCs is large 
and event reconstruction techniques are complex, requiring significant computational 
resources. These aspects make using TPC data in online event-triggering and event-
filtering algorithms that can effectively distinguish neutrino interactions from background 
activity (like cosmic-ray interactions or radiological backgrounds) very difficult, which limit 
detection efficiency to low-energy neutrino interactions. I propose developing a machine-
learning based trigger decision system for the Deep Underground Neutrino Experiment 
(DUNE) to extend the sensitivity of the detector, particularly for low-energy neutrinos that 
do not come from an accelerator beam. Building off of recent research in using machine 
learning to improve artificial intelligence in games, this new trigger decision system will 
employ software to optimize the data collection, pre-processing, and algorithms used to 
make a final trigger decision. Development and testing of the trigger decision system will 
highly leverage data from the ProtoDUNE and Short Baseline Neutrino (SBN) LArTPC 
detectors, and will also provide benefits to the physics programs of those experiments. 

Due to their ability to detect interactions with excellent spatial and energy resolution 
in a large, fully active volume, LArTPCs are an excellent choice for use as neutrino 
detectors. The Short Baseline Neutrino (SBN) program at Fermilab [1] will include three 
LArTPCs – MicroBooNE (currently operating), the Short Baseline Near Detector (SBND), 
and ICARUS – on the Booster Neutrino Beamline (BNB) at Fermilab, searching for non-
standard 𝜈" → 	𝜈%  oscillations. The Deep Underground Neutrino Experiment (DUNE) [2] will 
see an intense beam of neutrinos from Fermilab at a long baseline, measuring 𝜈" → 	𝜈% and 
𝜈" → 	𝜈% oscillation parameters to search for leptonic CP violation and determine the 
neutrino mass hierarchy. Importantly, DUNE will pursue physics beyond that resulting from 
an accelerator-based neutrino beam, including searches for atmospheric and solar neutrino 
interactions, beyond-Standard-Model proton decays, and signatures of 𝜈% bursts from 
nearby core-collapse supernovae. Each experiment relies on reconstruction of the fine 
details of interactions in LArTPCs to fully characterize them – to distinguish signal from 
background and to extract kinematics of the initial interactions. 

However, while LArTPCs are powerful detectors, many of the traits that make them 
powerful pose significant challenges to the collection of data and reconstruction of 
interactions. Ionization electrons can be drifted over large distances, allowing LArTPCs to 
have the large, fully active volumes needed for rare-interaction physics. But, with electron 
drift times on the order of milliseconds, LArTPCs require very long readout windows. This 
long exposure time leads to a large volume of data per event, and the potential for 
significant contamination from “out-of-time” particle interactions, such as cosmic rays in 
surface detectors and radiological backgrounds in detectors deep underground. Similarly, 
while the high spatial and energy resolution in LArTPCs allows for precise interaction 
reconstruction, it again comes at the cost of increasing the volume of data and complexity 



of event reconstruction. Traditional [3], tomographic [4], and image-based (e.g. deep-
learning-based) [5] reconstruction techniques all require simultaneous consideration of data 
from large portions of the TPC, even if only to identify a localized region of interest. 

These unique features of LArTPCs lead to significant challenges for data acquisition, 
data storage and access, and processing times for full reconstruction that can significantly 
influence the physics reach of the SBN and DUNE experiments. Trigger and early filtering 
algorithms for LArTPCs typically exclude information from the TPC because of the volume 
of data and time needed to make use of it, instead relying on detection of scintillation light  
and external muon tagger systems to trigger and reduce out-of-time backgrounds. For the 
surface SBN experiments, this reduces the rate of beam-coincident interactions to (barely) 
manageable levels, but the collected data are still dominated by cosmic rays and can only 
be further reduced by analysis of TPC activity. For DUNE, efficiently detecting low-energy 
interactions that are not in-time with a neutrino beam spill will require consideration of TPC 
information to trigger the readout – particularly daunting due to the detector’s massive size. 

While TPC reconstruction algorithms continue to become more sophisticated and 
robust, it is not yet understood how those (and future) algorithms can be brought together 
and performed within an online data acquisition system, where limitations on the available 
processing power, data bandwidth, and time to make a decision are key. A complicated 
decision-making and optimization problem must be performed: we must decide what 
subsets of data to look at and what algorithms to perform on that data to learn decision-
critical information, and do so while accounting for the cost of retrieving and processing 
that data. This decision process is also naturally iterative, which can allow for better 
potential performance but only adds to the potential complexity. 

I propose using principles of machine learning to develop a trigger decision system 
to solve this complicated triggering problem in LArTPCs. Machine learning has been used 
to solve many problems in analysis of large and complicated data, including analysis of 
data in high-energy and neutrino physics [6]. An application that seems particularly 
promising to help solve the triggering problem for LArTPCs is in the use of machine learning 
to improve artificial intelligence (AI) for games. Deep neural networks can be encoded with 
only the rules of the game and trained purely via ‘self-play’ to optimize movement through a 
decision tree and learn a ‘feel’ for winning strategies in the game, rather than focusing on 
brute force processing of possible outcomes. These networks and training strategies have 
been used to develop super-human AI engines for games with perfect information (e.g. 
chess [7]) and imperfect information (e.g. poker [8]). Triggering in LArTPCs (and other kinds 
of detectors) is essentially a game too, where the goal is to pick the greatest number of 
interesting events in a period of time, and where rules and limitations on data transfer and 
processing can be encoded in the training network. 

To develop and apply this machine-learning-based trigger decision system to the 
SBN and DUNE detectors, I propose a staged approach that makes use of large datasets 
from the existing MicroBooNE and ProtoDUNE LArTPCs. A first demonstration of the 
technique will be to train a network to analyze optical data from MicroBooNE and 
demonstrate that it can reproduce (or even improve upon) MicroBooNE’s light-based 
trigger algorithm. 

An early physics milestone will be to train a decision network to make use of TPC 
information alongside optical information to reject events that pass MicroBooNE’s current 
neutrino trigger but originate from through-going or stopping cosmic muons entering into 
the detector. This application would immediately aid in filtering MicroBooNE’s large 
collected dataset, and would then be applied to the other SBN detectors where early 
rejection of cosmic events will improve the data acquisition and event processing chain. 
Modifying the conditions of the training to optimize for different available latencies and 
dataflow architectures will allow for performance measurements under different conditions. 
This application can then also be applied to ProtoDUNE data to inform developments 
necessary for application and scaling to DUNE. 



A second physics milestone will be to add to the trigger decision network the ability 
to positively identify neutrino and neutrino-like interactions, particularly focused on 
electromagnetic showers. From a technical perspective this will probe the ability to handle 
multiple types of algorithms and triggers to pick out signal interactions in the presence of 
backgrounds. However, it will also have a significant impact on the physics of the SBN 
program. Because of their location near the surface of the earth, the SBN experiments face 
a significant background of cosmic-ray induced electromagnetic showers in reconstructed 
𝜈% energies below 500 MeV, a region of high interest due to the “low-energy” excess 
reported by MiniBooNE. While these cosmic ray-induced backgrounds can be perfectly 
modeled by taking a sample of “off-beam data”, currently it is highly inefficient to do so, as 
the final event selection imposes specific event topologies that are relatively rare in cosmic-
ray-only events and are dependent on a reconstruction of TPC data. Online identification of 
signal-like events in this off-beam data sample will allow a higher statistics sample of 
relevant data to be collected, and significantly reduce the errors on data-driven background 
models, improving SBN oscillation searches, especially in the lowest 𝜈% energy ranges. 

Finally, a third major milestone will be demonstrating a trigger decision network can 
work for low-energy 𝜈% interactions, like from solar and supernova-induced neutrinos, at the 
scale of DUNE.  Supernova burst neutrinos will lead to signatures in DUNE that will be 
spread across the volume of the large detector, will be produced over long periods of times 
(several tens of seconds), and must be identified amongst a sea of low-energy radiological 
backgrounds. Solar neutrino signatures will be of similarly low energies, and not have the 
benefit of occurring in time-coincident bursts, and so may be even more challenging to 
detect above low-energy backgrounds. Along with simulations of signal and background 
signatures, detailed and realistic models of data transfer and processing will be developed 
to inform optimal triggering strategy over the entire detector, and can provide feedback on 
final DUNE DAQ design and dataflow strategy. Tests on simulated dataflow models along 
with algorithms using information from both TPC and light collection systems in real time 
will be further validated on the readout hardware and data of ProtoDUNE. 

To perform this proposed plan of research, I am requesting support for myself (the 
PI) and two post-doctoral research associates. Funds will be used to purchase computing 
and networking hardware for machine-learning training and inference testing, as well as to 
test and develop large-scale data transfer models. Funds would also support the work of a 
computing professional at Fermilab to assist in the development of those models. 

The use of LArTPCs in large-scale neutrino physics is moving towards a mature 
state, but the large volume of data and complicated event identification and reconstruction 
pose major challenges to future detectors, pointing to a need for smarter triggering 
algorithms that can make use of TPC information in an efficient way and allow us to get to 
physics results faster. Following from successful applications of machine learning to solve 
similar problems in AI for games, I propose to develop a machine-learning based approach 
to determine optimal triggering strategy for future LArTPCs, leading ultimately to an efficient 
and performant trigger system for DUNE. 
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