IOTA diagnostics and experiments with synchrotron-light photomultipliers

G. Stancari for the team

IOTA/FAST Group Meeting Fermilab, February 8, 2019

https://indico.fnal.gov/event/19797

Main goals

Exploit the sensitivity and fast time response of photomultipliers for

Beam diagnostics

- intensity measurement with wide dynamic range, from 10⁹ down to single electrons
- lifetime measurements vs. beam intensity
- turn-by-turn beam positions and arrival times: synchrotron oscillations, beam jitter, etc.

Physics experiments

- time distribution of individual electron losses
- time structure of synchrotron radiation from single electrons
- properties of undulator radiation

•

Experimental layout

IOTA/FAST Group Meeting | Fermilab, 8 Feb 2019

M2L sync-light station

Equipped with beam splitter, camera, PMT Dedicated to continuous intensity monitoring for operations Provides intensity device N:IBEASL

M3L sync-light station

Equipped with micro-channel plate photomultiplier for timing measurements Camera can be shifted out to expose the photodetector

On Wed Feb 6, replaced Hamamatsu gated MCP-PMT with multi-anode Photonis MCP-PMT: larger area; segmented for transverse position measurements (4x4 matrix now wired as 2x2); no gating cross-talk on signal

Signal processing and data acquisition (mostly ESB RR 903-904)

Recent IOTA studies

Tue Jan 29 (parasitic)

- acquisition setup, signal timing
- recorded turn-by-turn beam arrival times for 10 s with 0.4 mA in the machine

Thu Jan 31 (6 h)

- recorded current signal and count rate of M2L PMT with varying gain, from injection down to single electron
- measured sensitivity of M3L MCP-PMT (Hamamatsu) not as good as PMT or cameras due to intrinsic current limit and gate cross-talk
- collected arrival time data of single circulating electrons for offline analysis

Thu Feb 7 (6 h)

- verified signals from M3L multi-anode MCP-PMT (Photonis) 4 anode signals can be used for transverse positions and arrival times
- compared single-electron MCP-PMT sensitivity with PMT and cameras
- recorded M2R camera intensity data for offline analysis of single-electron loss times

Fermilab

Dark current from linac affects current readout of M2L PMT. Need to close the laser shutter and insert Faraday cup for sensitive measurements (or shield M2L station).

Single-electron sensitivity requires a conventional PMT that sees most of the synchrotron radiation. Consider replacing the 92%/8% beam splitter at M2L (or adding a PMT to another station with a different beam splitter).

Example of intensity and lifetime measurement

Current measurement can easily go down to microamps

Lifetime improves with decreasing intensity

Single-electron sensitivities rely on counting rates

