
Towards a 2D Drift Simulation  
in LArSoft 

Step 1: Proof of Principle

Tracy Usher / Leon Rochester
LArSoft Coordination Meeting 

February 12, 2019

Basic Concept
• As just described by Leon…

• Nutshell summary:

• Use look up tables to describe the response to a point charge on the nearest
wire (“central wire”) and its 9 nearest neighbors on each side

• Look up tables generated by Leon Rochester

• A set of tables (central wire plus 9 nearest wires each side) given per plane (3
planes) and per “impact parameter” (distance of closest approach to the central
wire in the wire plane - in 1/10 wire pitch increments)

• Starting position for the tables is a plane 10 cm above the wire plane

• Each look up table consists of a vector with (for ICARUS) 175 “ticks” from the
starting position to describe the effect on a given wire

• Note that if the drift starts inside the 10 cm region then the starting index in the
table is adjusted to take into account the start position

• Build up the response to a track by simply adding the individual responses of
the deposited point charges

 2

LArSoft Implementation
• For the “new” LArG4 refactored code the electron drift to the wire planes

has been factored into a separate module called “SimDriftElectrons” which
we can use as the starting point

• Input are the new “SimEnergyDeposit” objects which record position, energy
deposited and number of electrons (post recombination) at each step in the Geant4
tracking procedure

• Refactor this module to use “art tools” to do the actual electron drift and
wire plane response

• Even further, factor out the actual drift part from the response part

• The drifting of electrons (breaking into “clusters”, applying lifetime/diffusion effects) is its own
art tool which should allow straightforward switching

• The interface for the response tools (and their implementation) are such
that they define their output data products and are responsible for
allocating, filling and outputting them

• For example, this allows the 2D drift simulation to output a new data product

• Believe it is now possible to define a pixel simulated data product and simply switch in
a response tool at this point 3

Current Structure
• Producer module: SimDriftElectrons

• Response Tools:

• ElectronDriftStandard - reproduces the default 1D drift responses

• Primary output data product: SimChannels

• Also optionally output SimDriftedElectronCluster

• ElectronDrift2D - new tool to do the 2D drift simulation

• Primary output data product: “Waveform”

• Also output SimChannels (for truth information)

• Optionally output SimDriftedElectronCluster

• Drift Tools:

• DiffusionStandard - reproduces current electron drift model

 4

Why a New Data Product?
• The drift simulation breaks a given SimEnergyDeposit contribution in

“clusters” of electrons and drifts each independently. This allows
modeling of diffusions

• Each “cluster” is around 20 electrons, MinI deposit is ~70-100 clusters

• The standard drift simulation populates 1-2 “ticks” with truth
information

• Each tick a vector of a struct containing: MC “TrackID”, fraction of energy
contributed by this entry, energy deposited, number of electrons

• Filling requires “finding” the tick to add the info too and then do some number
of calculations

• Filling a SimChannel entry is “acceptable” in the current simulation but
one could see that it could be a time consumer if one was filling a
larger number of ticks

• There is also the question of what “truth” means in this case….

 5

Why a New Data Product?
• The goal of the 2D drift simulation is to output an object which

will combine the number of electrons surviving to a plane with
the field response

• This will look like a waveform in the number of electrons per tick
(where we note that the number of electrons can be negative)

• The look up tables will have 175 ticks worth of information for
each wire. We will want to add the contribution of each tick to
not only the closest wire after the drift to the wire plane, but to
the nearest 9 neighbors on each side of the wire.

• Using the SimChannels turns out to be prohibitively expensive

• My first runs were taking 8-9 minutes for a single particle simulation

 6

Currently Proposed Solution
• Define a new output data object that is strictly a waveform

containing the number of electrons per tick on the wire

• Starting point is to simply clone the existing Wire.h object used in the
reconstruction

• In particular it is defined using sparse_vectors so will be minimally sized

• These are filled for each tick of each of the lookup tables used for a given
drifted electron cluster (19 wires x 175 ticks)

• Keep the SimChannel output (or switch to the
SimDriftElectronCluster objects) to handle the truth matching

• These are filled only once per drifted electron cluster

• With this scheme able to get time to run a single particle simulation
down to ~30 seconds

• This is still too slow, ~O(10) times slower than the 1D drift simulation
 7

Detector Simulation
• The detector simulation step takes as input the simulated

waveforms and then outputs “RawDigits”

• Simpler than previous detector simulation - no longer convoluting
with an approximate field response

• The input simulated waveform represents number of electrons per
tick, this is convoluted with the electronics response and then
scaled to go from electrons to ADC units

• Note that in the LArSoft simulations to date the digitization of
the electronics has always been effectively implemented in
the simulation

• In principle, one can now keep a finer grain simulated waveform
and do the digitization during the detector simulation…

 8

 9

RawDigits from Detector Simulation
1D Simulation - No Noise

First Induction (horizontal wires)

Middle Induction (U wires)

Collection (V wires)

 10

RawDigits from Detector Simulation
2D Simulation - No Noise

First Induction (horizontal wires)

Middle Induction (U wires)

Collection (V wires)

Where To From Here?
• This looks promising!

• Much work to do:

• Need to consider the output data products

• And we should keep an eye open to what might be useful for a pixel detector as well
since we are close to wanting to integrate this into LArSoft too

• Need to understand an efficient way to implement this scheme

• Even at ~10x slower than current it is probably too slow to be usable?

• Definitions for interface classes?

• etc.

• Currently this work is aimed at ICARUS which is preparing for another
major round of sim/recon to support the upcoming SBN workshop

• Is it realistic to have a first implementation available in LArSoft by the beginning
of March to have this available for ICARUS?

 11

