MeV Scale Thermal Dark Matter and Relic Neutrino Decoupling

Miguel Escudero Abenza

miguel.escudero@kcl.ac.uk

based on ArXiv:1812.05605 JCAP 1902 (2019) 007

ArXiv:1904.XXXXX to appear with an improved treatment

DarkMatterUK 11th of April 2019

European Research Council Established by the European Commission

Motivation

Weakly Interacting Massive Particles

Stable particle with $\langle \sigma v
angle \simeq 3 imes 10^{-26} \, {
m cm}^3/{
m s}\,$ gives the correct abundance

The annihilation process freezes out at T = m/20

Light Thermal Dark Matter relics impact the process of neutrino decoupling

Motivation II

Precision Cosmology:

Pitrou et. al. 1801.08023

$$N_{\rm eff}^{\rm Planck} = 2.92 \pm 0.18$$

Planck 2018: 1807.06209

$$N_{\rm eff}^{\rm Stage-IV} = 3.04 \pm 0.03?$$

Stage-IV CMB: 1610.02743

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Motivation III

Hard to test MeV dark matter at Direct Detection experiments

WIMP-Nucleus Scattering

10^{-27} **10⁵** Dark Matter Particle-Nucleon Cross Section (pb) (cm²) 10⁻³² 10^{-28} **10**⁴ **XENON100** DarkSide50 10⁻³³ 50 10³ 10^{-29} 10⁻³⁴ ਹ 10² 10^{-30} 10 10⁻³⁶ 10^{-31} 1 HO 10⁻³⁷ **10**⁻¹ 10^{-32} $\overline{\sigma}_{e} \ [\mathrm{cm}^{2}]$ 10⁻³⁸ 10⁻² 10⁻³⁹ N-10⁻⁴⁰ 9 10^{-33} 10⁻³ **10**⁻⁴⁰ 10-4 10^{-34} CRESST-III 1904.00498 **10**⁻⁴¹ 10⁻⁵ 10^{-35} 10⁻⁴² **10**⁻⁶ Limits from 10^{-36} 10⁻⁴³ different n_e : 10⁻⁷ 1e⁻ 10⁻⁴⁴ ≥ 10⁻⁸ 10^{-37} 2e[−] 10⁻⁴⁵ 10⁻⁹ **Coherent Neutrino Scattering on CaWO** 10^{-38} ² 10⁻⁴⁶ **10⁻¹⁰** $F_{DM}=1$ 10478 0.1 0.2 0.3 0.4 2 3 5 678910 1 10^{-39} Dark Matter Particle Mass (GeV/c²) 10 10^{2} m_{χ} [MeV]

WIMP-Electron Scattering

Experimental programme developed to search for them: SENSEI, SuperCDMS, DAMIC, PTOLEMY, ... 1608.08632 FASER, Belle-II, LDMX, SHIP, MATHUSLA, ... 1707.04591

Miguel Escudero (KCL)

Outline

1) Neutrino Decoupling beyond the Standard Model

- a) Simplified approach to the neutrino decoupling
- b) Comparison with traditional SM evaluations

2) An application: MeV scale Thermal Dark Matter
a) Purely Electrophilic and Neutrinophilic Relics
b) Generic Relic

3) Conclusions

The Process of Neutrino Decoupling

T > 3 MeV

Highly Efficient Processes

 $e^{+}e^{-} \leftrightarrow \gamma \gamma$ $e^{\pm}\gamma \leftrightarrow e^{\pm}\gamma$ $e^{+}e^{-} \leftrightarrow \bar{\nu}_{i}\nu_{i}$ $e^{\pm}\nu_{i} \leftrightarrow e^{\pm}\nu_{i}$

In comoving coordinates

Neutrinos

Miguel Escudero (KCL)

Photons

Z-W (off-shell)

MeV DM and Neutrino Decoupling BSM

DMUK 11-04-19

The Process of Neutrino Decoupling

$m_e < T < 3 MeV$

Highly Efficient Processes

In comoving coordinates

Z-W (off-shell)

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

DMUK 11-04-19

The Process of Neutrino Decoupling

$T_{\gamma} < m_e/10$

Black Body Photon Radiation

Only Neutrinos and Photons

• $T_{\gamma}/T_{\nu} = 1.4$

• $\rho_{\gamma}/(\rho_{\nu}+\rho_{\gamma})=0.6$

In comoving coordinates

Neutrinos

Miguel Escudero (KCL)

Electrons

Photons

MeV DM and Neutrino Decoupling BSM

DMUK 11-04-19

Z-W (off-shell)

Temperature Evolution in the SM

SM Evolution Neutrino Decoupling in the SM 1.4 1.3 ${\cal T}_{\gamma}/{\cal T}_{
u}$ 1.2 × Q' 1.1 1.0 3 2 0.6 0.1 0.01 5 10 1 T_{γ} (MeV)

Definition:

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

Definition:

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right) \qquad N_{\rm eff} = 3 \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$$

Definition:

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right) \qquad N_{\rm eff} = 3 \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$$

SM prediction: $N_{\text{eff}}^{\text{SM}} = 3.045$

1606.06986 de Salas & Pastor hep-ph/0506164 Mangano *et. al.*

Definition:

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right) \qquad N_{\rm eff} = 3 \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$$

SM prediction: $N_{\text{eff}}^{\text{SM}} = 3.045$

1606.06986 de Salas & Pastor hep-ph/0506164 Mangano et. al.

Why is it not 3? for an excellent review see hep-ph/0202122 by Dolgov

- 1) Neutrino Decoupling not instantaneous
- 2) Weak Interactions freeze out at T = 2-3 MeV hence, some heating from e⁺e⁻ annihilation
- 3) Finite Temperature QED corrections
- 4) Neutrino oscillations are active at T < 3 MeV

$$\sigma \sim G_F^2 E_\nu^2$$

 $n \langle \sigma v \rangle \simeq G_F^2 T^5 \simeq H$

 $\delta m_e^2(T), \, \delta m_{\gamma}^2(T)$

Miguel Escudero (KCL)

Definition:

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right) \qquad N_{\rm eff} = 3 \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$$

SM prediction: $N_{\text{eff}}^{\text{SM}} = 3.045$

1606.06986 de Salas & Pastor hep-ph/0506164 Mangano et. al.

 $\sigma \sim G_F^2 E_{\mu}^2$

 $n \left< \sigma v \right> \simeq G_F^2 T^5 \simeq H$

 $\delta m_e^2(T), \, \delta m_{\gamma}^2(T)$

Why is it not 3? for an excellent review see hep-ph/0202122 by Dolgov

- 1) Neutrino Decoupling not instantaneous
- 2) Weak Interactions freeze out at T = 2-3 MeV hence, some heating from e⁺e⁻ annihilation
- 3) Finite Temperature QED corrections
- 4) Neutrino oscillations are active at T < 3 MeV

BSM traditional approach: Assume neutrinos decouple instantaneously

SM prediction machinery:

Density Matrix formalism and the binning of the neutrino distribution functions result in a system of 200 STIFF coupled integro-differential equations.

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Neutrino Decoupling: 1812.05605

Simplified approach to the neutrino decoupling:

Well justified approximations:

1) Assume neutrinos follow Fermi-Dirac distributions $~~\delta
ho/
ho<1\%$

 $e^+e^- \leftrightarrow \bar{\nu}\nu \rightarrow \mu_{\nu} = 0$

- 2) Neglect chemical potentials
- 3) Neglect neutrino oscillations $\Delta N_{\rm eff} \simeq 0.0007$

Neutrino Decoupling: 1812.05605

Simplified approach to the neutrino decoupling:

Well justified approximations:

- 1) Assume neutrinos follow Fermi-Dirac distributions $~~\delta
 ho/
 ho<1\%$
- 2) Neglect chemical potentials $e^+e^- \leftrightarrow \bar{\nu}\nu \rightarrow \mu_{\nu} = 0$
- 3) Neglect neutrino oscillations $\Delta N_{\rm eff} \simeq 0.0007$

Result in: 2-3 simple coupled differential equations for T_{γ}, T_{ν}

$$\frac{dT_{\gamma}}{dt} = -\frac{4H\rho_{\gamma} + 3H\left(\rho_{e} + p_{e}\right) + \frac{\delta\rho_{\nu_{e}}}{\delta t} + 2\frac{\delta\rho_{\nu_{\mu}}}{\delta t}}{\frac{\partial\rho_{\gamma}}{\partial T_{\gamma}} + \frac{\partial\rho_{e}}{\partial T_{\gamma}}} \qquad \qquad \frac{dT_{\nu}}{dt} = -HT_{\nu} + \frac{\frac{\delta\rho_{\nu_{e}}}{\delta t} + 2\frac{\delta\rho_{\nu_{\mu}}}{\delta t}}{3\frac{\partial\rho_{\nu}}{\partial T_{\nu}}}$$

Analytical expressions for the SM energy transfer rates: As a result of a 12 Dimensional integral!

$$\frac{\delta\rho_{\nu_e}}{\delta t}\Big|_{\rm SM}^{\rm MB} = \frac{G_F^2}{\pi^5} \left[1 + 4s_W^2 + 8s_W^4\right] \left[32\left(T_{\nu_\mu}^9 - T_{\nu_e}^9\right) + 56\,T_\gamma^4\,T_{\nu_e}^4\,\left(T_\gamma - T_{\nu_e}\right)\right]$$

Neutrino Decoupling: 1812.05605

Neutrino Decoupling in the SM	$T_{\nu_e} = T_{\nu_{\mu}}$		$T_{\nu_e} \neq T_{\nu_\mu, \nu_\tau}$		
Scenario	T_{γ}/T_{ν}	$N_{\rm eff}$	T_{γ}/T_{ν_e}	$T_{\gamma}/T_{\nu_{\mu}}$	$N_{\rm eff}$
Instantaneous decoupling	1.4010	3	1.4010	1.4010	3
Instantaneous decoupling $+$ QED	1.3998	3.011	1.3998	1.3998	3.011
MB collision term + QED	1.3949	3.053	1.3935	1.3958	3.052
FD collision term $+$ QED	1.3954	3.049	1.3940	1.3962	3.048
$\mathbf{FD} + m_e$ collision term + QED	1.3957	3.046	1.3946	1.3965	3.045

Virtues of the simplified approach:

<u></u>	Simple	Only 2-3 evolution equations
	Physical	Takes into account all relevant interactions and the time dependence of the process
	Fast	Takes O(10) seconds to evaluate N_{eff} on an average computer
!!	Open	Code can be found at https://github.com/MiguelEA/nudec_BSM
!!	Precise	Reproduces N _{eff} in the SM!
	BSM	Straightforward to include BSM species and interactions

MeV DM and Neutrino Decoupling BSM

MeV Thermal Dark Matter

Effect is to release entropy into the system, e.g.:

Boehm, Dolan and McCabe 1207.0497, 1303.6270 Nollet and Steigman 1312.5725, 1411.6005 Serpico and Raffelt astro-ph/0403417 Kolb, Turner and Walker PRD 34 (1986) 2197

Thereby altering
$$T_{\nu}$$
 or T_{γ} and hence: $N_{\text{eff}} = 3\left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$

This is independent of the angular momentum of the annihilation process!

In general are also efficient delayers of the neutrino decoupling process via:

$$e^+e^- \leftrightarrow \chi\chi \leftrightarrow \bar{\nu}\nu$$

Miguel Escudero (KCL)

Impact of Thermal Dark Matter

Neutrinophilic Relic: N_{eff} > 3.045

Electrophilic Relic: N_{eff} < 3.045

Bounds on MeV scale Dark Matter

Lower bound on electrophilic and neutrinophilic thermal dark matter particles independent of their spin and annihilation being s-wave or p-wave

$$m_{
m DM} > 3\,{
m MeV}$$
 at 95%CL

Particularly relevant bound for p-wave annihilating relics to electrons and for both s-wave and p-wave annihilating relics to neutrinos.

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Generic Thermal Dark Matter

Generic Thermal Dark Matter

WIMPs that interact with electrons and neutrinos are more elusive to CMB observations

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Summary and Conclusions

N_{eff} represents a powerful probe of the thermal history of the early Universe. 1% precision expected in the upcoming future. This will represent a strong constraint on BSM physics.

Developed a simplified, fast and precise approach to the neutrino decoupling, *i.e.* to N_{eff} and BBN. Could be useful to test many BSM models.

• Thermal Dark Matter:

- Lower bound on the Dark Matter mass of $m_{
 m DM} > 3\,{
 m MeV}$
- Generic light WIMPs tend to delay the process of neutrino decoupling and are mode elusive to CMB observations

Thank you for your attention!

Time for questions and comments

Check the code at:

https://github.com/MiguelEA/nudec_BSM

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Back UP

Neutrino Oscillations

What about BBN?

 $D/H|_p = (2.569 \pm 0.027) \times 10^{-5}$ $Y_p = 0.245 \pm 0.003$

Percent precision on the primordial element abundances!

Would be very interesting to code the evolution in:PArthENoPE 1712.04378Would be very interesting to code the evolution in:AlterBBN1806.11095PRIMAT1801.08023

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM

Neutrino Decoupling with Dark Matter

$$\frac{\delta \rho_{\chi}}{\delta t} \simeq m_{\chi} \frac{\delta n_{\chi}}{\delta t} \simeq -m_{\chi} \left\langle \sigma v \right\rangle \left(n_{\chi}^2 - n_{\chi}^{2 \, \text{eq}} \right) \,.$$

$$\frac{\delta\rho_{\chi}}{\delta t}\Big|_{\nu} = \frac{g_{\chi}^2 m_{\chi}^5}{4\pi^4} \left\langle \sigma v \right\rangle_{\chi\chi \to \bar{\nu}\nu} \left[T_{\nu}^2 K_2^2 \left[\frac{m_{\chi}}{T_{\nu}} \right] - T_{\gamma}^2 K_2^2 \left[\frac{m_{\chi}}{T_{\gamma}} \right] \right]$$

$$\frac{m_{\chi}}{T} \simeq 6.6 + \frac{1}{2} \log \left[\frac{\langle \sigma v \rangle_{\chi\chi \to \bar{\nu}\nu}}{10^{-3} \times \langle \sigma v \rangle_{\text{WIMP}}} \frac{10 \text{ MeV}}{m_{\chi}} \frac{g_{\chi}^2}{4} \sqrt{\frac{10.75}{g_{\star}}} \right] + 2 \log \left[\frac{m_{\chi}/T}{6.6} \right]$$

Neff at the CMB

Miguel Escudero (KCL)

MeV DM and Neutrino Decoupling BSM