4MOST – 4m Multi-Object Spectroscopic Telescope

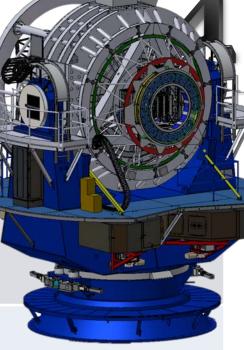
4MOST: ESO's wide-field, high-multiplex optical spectroscopic survey facility

Matthias Steinmetz (AIP)

Galactic Archeology

Gaia and PLATO

Science Themes


Ten Consortium Surveys

No	Survey Name	Survey (Co-)PI
S1	Milky Way Halo LR Survey	Irwin (IoA) <i>,</i> Helmi (RuG)
S2	Milky Way Halo HR Survey	Christlieb (ZAH)
S3	Milky Way Disk and Bulge LR Survey	Chiappini, Minchev, Starkenburg (AIP)
S4	Milky Way Disk and Bulge HR Survey	Bensby (LU), Bergemann (MPIA)
S5	Galaxy Clusters Survey	Finoguenov (MPE)
S6	AGN Survey	Merloni (MPE)
S7	Galaxy Evolution Survey (WAVES)	Driver (USW), Liske (HHU)
S8	Cosmology Redshift Survey	Richard (CRAL), Kneib (EPFL)
S9	Magellanic Clouds Survey	Cioni (AIP)
S10	Time-Domain Extragalactic Survey (TiDES)	Sullivan (Southampton)

Instrument Specification

Specification	Design value		
Field-of-View (hexagon)	~4.2 degree ² (Ø>2.6°)		
Multiplex fiber positioner	2436		
Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy	R~4000-7500 812 fibres (2x) 370-950 nm < 1 km/s		
High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy	R~20,000 812 fibres 392.6-435.5 nm, 516-573 nm, 610-679 < 1 km/s		
# of fibers in Ø=2' circle	>3		
Fibre diameter	Ø=1.45 arcsec		
Area (first 5 year survey)	>2h x 18,000 deg ²		
Number of science spectra (5 year)	~75 million of 20 min		
4MOST 2ndGen LSST, 12 April 2019 Matthias Steinmetz			

nm

VISTA at Parannal Observatory, Chile

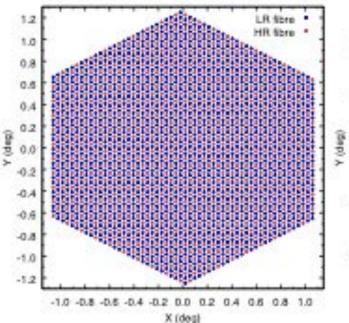
Wide Field Corrector and Atmospheric Dispersion Compensator (WFC/ADC)

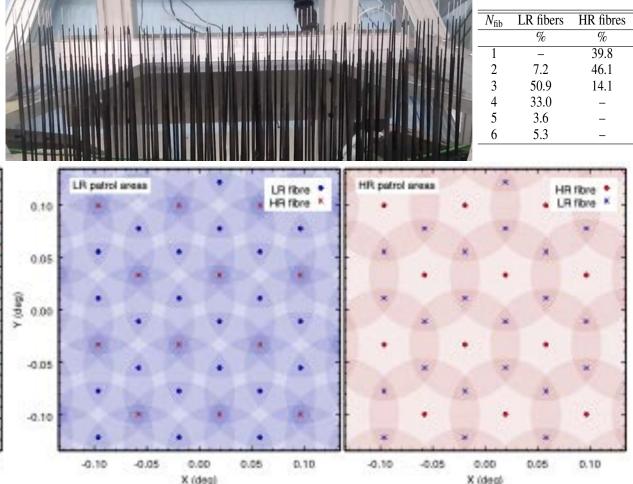
4 Lenses Groups with 2 counter-rotating prisms

Field \emptyset = 2.6 degree

535 mm Focal Diameter Largest lens ~950mm

ADC functions to ZD=55°


Design AIP Assembly and alignment UCL

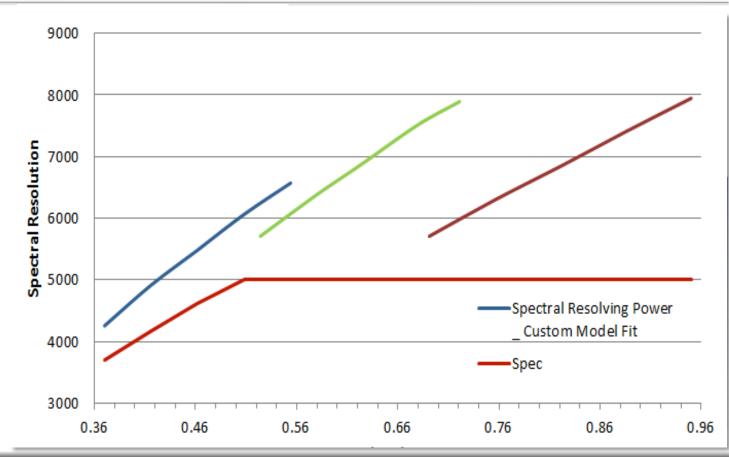


AESOP Fiber Positioner

2436 Fiber Probes -patrol diameter 2.4x pitch -minimum separation ~20" -reconfiguration time <2 min during CCD readout

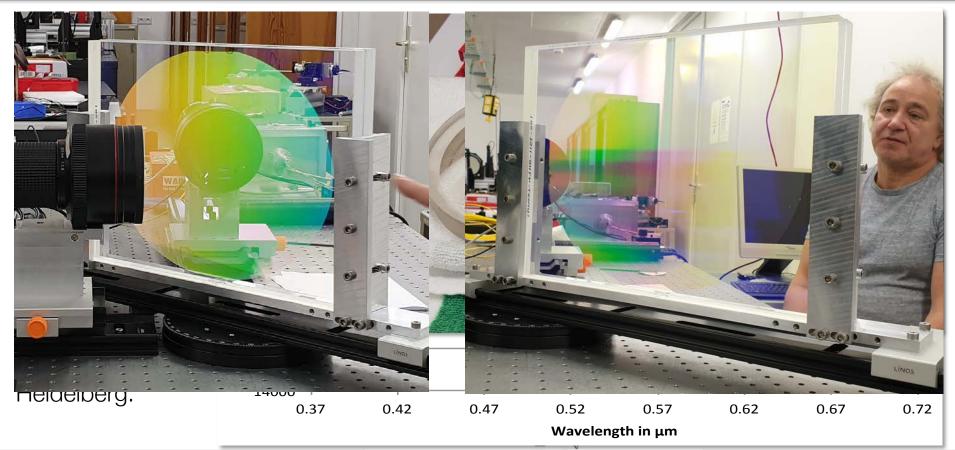
Low Resolution Spectrograph (LRS)

3 arms spectrograph 3 CCDs 6k x 6k


200 mm beam size

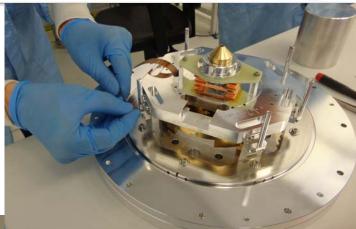
812 science fibers per spectrograph

2 mirrored spectrographs


Thermally stabilized

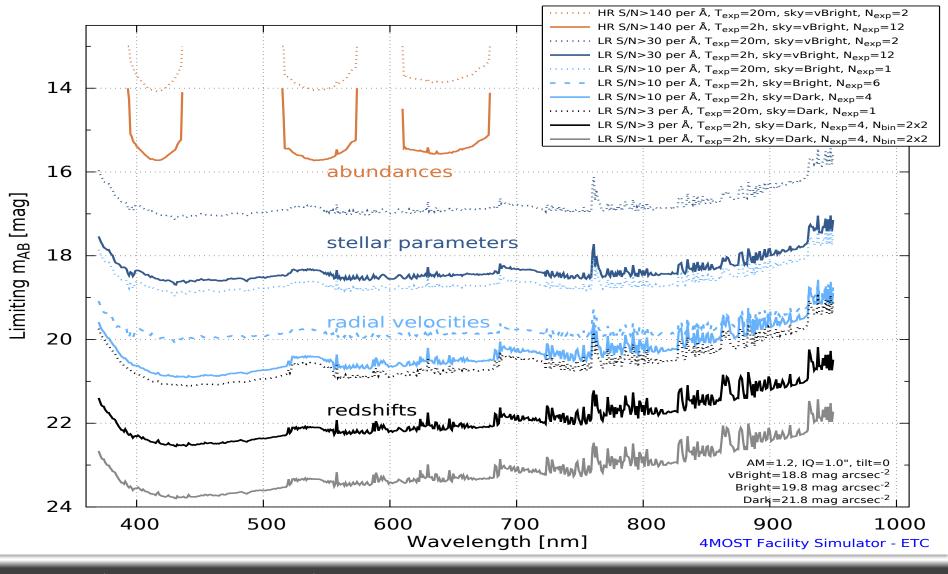
Design and build at CRAL in Lyon.

High Resolution Spectrograph (HRS)

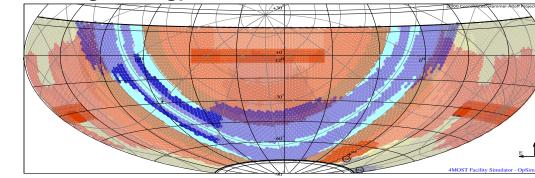


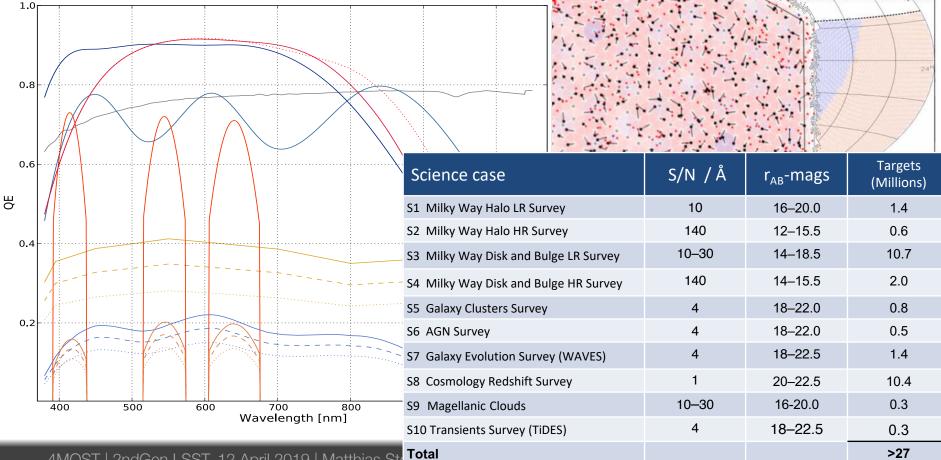
4MOST Detectors

- 9 identical detectors (plus spares and engineering devices)
- E2V 6kx6k Deep Depletion Broad Band Coating
- Detector head based on ESPRESSO design
- Cooling and controls identical to MUSE design
- All to ESO standards



CFC




4MOST Operations

- Unique operations model for MOS instruments suitable for most science cases
- 4MOST program defined by Public Surveys of 5 years
- Surveys will be defined by *Consortium* and *Community*
- All Surveys will run *in parallel*
 - Surveys share fibres per exposure for increased efficiency
- Consortium Key Surveys will define observing strategy
 - Millions of targets all sky
 - Fill all fibres
- Add-on Surveys for smaller surveys
 - Small fraction fibers all sky or
 - dedicated small areas
 - 10³ to 10⁶ targets
- Several passes of sky with 2, 10, 20, 30 mins
- Wedding-cake distribution for total time 1h to 10h

Simulate throughput, fibre as survey strategy and verify total

Schedule and Milestones

- March 2019: -Final Design Review-2, detailed designs finalized - Call for Proposals Readiness Review, ready for Phase I community proposal selection Fall 2019: - Call for Letters of Intent from Community Jan 2021: - All subsystems manufactured, assembled, integrated and verified Feb 2022: - Full system integrated and verified at AIP, preliminary acceptance Europe Oct 2022: - System delivered, installed and commissioned on telescope, preliminary acceptance Chile
- Nov 2022 Oct 2027:
 - First science survey of 4MOST, 30% of targets available for Community Surveys

A spectroscopic LSST

- 4MOST parallel survey model

 Picky back many low target density surveys
- Simultaneously serving several types of specotrographs
 - HiRes large spectral coverage MOS
 - Fibre bundles deployable IFUs
 - Partial reconfiguration of fields
- New fibre concepts (e.g. OH suppression)
- Different fibres?

