The $O\left(\alpha^{2}\right)$ Initial State Radiation to $e^{+} e^{-}$Annihilation into a Neutral Vector Boson Revisited

J. Blümlein ${ }^{1} \quad$ A. De Freitas ${ }^{1} \quad$ K. Schönwald ${ }^{1} \quad$ C. Raab ${ }^{2}$
${ }^{1}$ DESY, Zeuthen
${ }^{2}$ Universität Linz
LoopFest, 2019
based on:
J. Blümlein, A. De Freitas, C. Raab and K. Schönwald, Phys.Lett. B791 (2019)
and further work in preparation

Content

- Introduction
- Theory of Initial State Radiation
- Previous Calculations
- Factorization in the Asymptotic Region
- Recalculation
- Techniques
- Results
- Conclusions and Outlook

Introduction

- We revisit the initial state corrections to $e^{+} e^{-}$annihilation to a neutral vector boson.
- This corrections are important for the prediction of the Z-boson peak and for $t \bar{t}$ production at LEP, ILC and FCC-ee, and at Higgs factories through $e^{+} e^{-} \rightarrow Z^{*} H^{0}$.

Theory of Initial State Radiation

We look at the process:

$$
e^{-}+e^{+} \rightarrow \gamma^{*} / Z^{*} \rightarrow f^{-}+f^{+}
$$

with the invariants

$$
\left(p_{-}+p_{+}\right)^{2}=s, \quad p_{-}^{2}=p_{+}^{2}=m_{e}^{2}, \quad q^{2}=s^{\prime}
$$

The initial state radiation (ISR) of n particles can be described according to the Drell-Yan mechanism

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} s^{\prime}}=\frac{\sigma^{0}\left(s^{\prime}\right)}{4 s} \int \mathrm{~d}^{4} q \delta^{+}\left(q^{2}-s^{\prime}\right) \frac{1}{(2 \pi)^{3 n}} \prod_{i=1}^{n} \int \mathrm{~d}^{4} k_{i} \delta^{+}\left(k_{i}^{2}-m_{i}^{2}\right) \delta^{(4)}\left(p_{-}+p_{+}-q-K\right)\left|T^{(n)}\right|^{2}
$$

where $\sigma^{0}\left(s^{\prime}\right)$ describes the leading order process and $T^{(n)}$ the matrix element of the ISR process.

The $\mathcal{O}(\alpha)$ Corrections

- The first radiative corrections come from the process

$$
e^{+}+e^{-} \rightarrow \gamma^{*} / Z^{*}+\gamma
$$

- To stay in $d=4$, we can split the contributions into hard, soft and virtual photons.
- The hard part is characterized by demanding $k^{0}>\frac{\sqrt{s} \Delta}{2}$.
- The soft and virtual parts of the cross section have to be made infrared finite by introducing a small photon mass λ.
- The cross section is then given by

$$
\frac{d \sigma^{(1), l}}{d s^{\prime}}=\frac{d \sigma^{(0)}}{s}\left(\frac{\alpha}{\pi}\right)\left[\delta(1-z)\left(\delta_{1}^{S_{1}}(\lambda, \Delta)+\delta_{1}^{V_{1}}(\lambda)\right)+\theta(1-z-\Delta) \delta_{1}^{H_{1}}(z)\right]
$$

- The result is given by

$$
\begin{aligned}
\frac{d \sigma^{(1), I}}{d s^{\prime}} & =\frac{d \sigma^{(0)}}{s} \frac{\alpha}{\pi}\left[\delta(1-z)\left(-2+\frac{3}{2} L+2 \zeta_{2}+2(L-1) \ln (\Delta)\right)\right. \\
& \left.+\theta(1-z-\Delta) \frac{1+z^{2}}{1-z}(L-1)\right]+\mathcal{O}\left(\frac{m^{2}}{s}\right)
\end{aligned}
$$

with $L=\ln \left(s / m_{e}^{2}\right)$.

Why is it a 'revisit'?

ISR corrections have been calculated up to $O\left(\alpha^{2}\right)$ in the asymptotic limit $m_{e}^{2} / s \ll 1$ with two different techniques:

1. Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))

- Full calculation with massive electrons in the limit $m_{e}^{2} \ll s$ calculation in $d=4$ with soft-hard separation, including soft and virtual photons, hard bremsstrahlung, as well as fermion pair production.
- Expansion in $m_{e}^{2} \ll s$ on integrand level (no details given).

Why is it a 'revisit'?

ISR corrections have been calculated up to $O\left(\alpha^{2}\right)$ in the asymptotic limit $m_{e}^{2} / s \ll 1$ with two different techniques:

1. Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))
\checkmark Full calculation with massive electrons in the limit $m_{e}^{2} \ll s$ calculation in $d=4$ with soft-hard separation, including soft and virtual photons, hard bremsstrahlung, as well as fermion pair production.

- Expansion in $m_{e}^{2} \ll s$ on integrand level (no details given).

2. Blümlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))
\checkmark Direct calculation of the asymptotic limit $m_{e}^{2} \ll s$ using massive light-cone operator matrix elements.

- The technique is based on asymptotic factorization.

Buza, Matiounine, Smith, Migneron, van Neerven (Nucl.Phys. B472 (1996))

- It was already used in Berends et al, but only for the logarithmically enhanced terms, claiming it works only at that level.

Factorization in the Asymptotic Region

In the asymptotic region $m_{e}^{2} \ll s$ the cross section factorizes

$$
\frac{\mathrm{d} \sigma_{i j}\left(s^{\prime}\right)}{\mathrm{d} s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} \sum_{l, k} \Gamma_{l, i}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right) \otimes \tilde{\sigma}_{l k}\left(z, \frac{s^{\prime}}{\mu^{2}}\right) \otimes \Gamma_{k, j}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right)
$$

into

- massless cross sections $\tilde{\sigma}_{i j}\left(z, \frac{s^{\prime}}{\mu^{2}}\right)$

Hamberg, van Neerven, Matsuura (Nucl. Phys. B359 (1991))
Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))

- massive operator matrix elements $\Gamma_{i j}\left(z, \frac{\mu^{2}}{m_{e}^{2}}\right)$, which carry all mass dependence Blümlein, De Freitas, van Neerven (Nucl.Phys. B855 (2012))
$\sigma^{(0)}\left(s^{\prime}\right)$ is the Born cross section and the Mellin convolution \otimes is given by

$$
f(z) \otimes g(z)=\int_{0}^{1} \mathrm{~d} z_{1} \int_{0}^{1} \mathrm{~d} z_{2} f\left(z_{1}\right) g\left(z_{2}\right) \delta\left(z-z_{1} z_{2}\right)
$$

Factorization in the Asymptotic Region

$\not \Delta(\Delta \cdot p)^{N-1}$

$$
\begin{aligned}
\Gamma_{e^{+} e^{+}} & =\Gamma_{e^{-} e^{-}}=\langle e| O_{F}^{N S, S}|e\rangle, & & O_{F ; \mu_{1}, \ldots, \mu_{N}}^{N S, S}=i^{N-1} \mathrm{~S}\left[\bar{\psi} \gamma_{\mu_{1}} D_{\mu_{2}} \ldots D_{\mu_{N}} \psi\right]-\text { traces }, \\
\Gamma_{e^{+} \gamma} & =\Gamma_{e^{-} \gamma}=\langle\gamma| O_{F}^{S}|\gamma\rangle, & & O_{V ; \mu_{1}, \ldots, \mu_{N}}^{S}=2 i^{N-2} \mathrm{~S}\left[F_{\mu_{1} \alpha} D_{\mu_{2}} \ldots D_{\mu_{N-1}} F_{\mu_{N}}^{\alpha}\right]-\operatorname{tr} \\
\Gamma_{\gamma e^{+}} & =\Gamma_{\gamma e^{-}}=\langle e| O_{V}^{S}|e\rangle, & &
\end{aligned}
$$

- The technique has been used to derive deep-inelastic scattering (DIS) structure functions in the asymptotic limit $Q^{2} \gg m^{2}$ up to $O\left(\alpha_{s}^{3}\right)$.
- In the context of DIS proven to work at α_{s}^{2} in the
- non-singlet process

Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997))
Blümlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016))

- pure-singlet process

Blümlein, De Freitas, Raab, Schönwald (Nucl.Phys. B945 (2019))
through analytic calculations.

Factorization in the Asymptotic Region

The comparison between both calculations shows:

- the one-loop, i.e. $O(\alpha)$, results agree between both calculations
- the logarithmically enhanced terms at two-loops $\left(O\left(\alpha^{2}\right)\right)$ agree between both calculations
- the constant terms do not agree
\Rightarrow breakdown of asymptotic factorization or calculation errors?
- In Berends et al the $\mathcal{O}\left(\alpha^{2}\right)$ corrections have been split up into four distinct processes:
- Process I, photon radiation
- Process II, non-singlet fermion pair production
- Process III, pure-singlet fermion pair production
- Process IV, interference between non-singlet and pure-singlet fermion pair production
- In the calculation of Blümlein et al (Nucl. Phys. B855 (2012)) process I and IV are combined owed to the nature of the OMEs.
- In the following we will present the calculation of fermion pair production, i.e. processes II-IV .

Recalculation

Our Approach to the recalculation:

- Full integration over the phase space in $d=4$, i.e. no a-priori expansion in the electron mass.
- The phase space can be parametrized as

$$
\begin{aligned}
\int d \mathrm{PS}_{3}= & \frac{1}{(2 \pi)^{6}} \int d^{4} q \int d^{4} k_{-} \int d^{4} k_{+}\left\{\delta\left(q^{2}-s^{\prime}\right) \delta\left(k_{-}^{2}-m^{2}\right) \delta\left(k_{+}^{2}-m^{2}\right)\right. \\
& \left.\times \delta^{(4)}\left(p_{-}+p_{+}-q-k_{-}-k_{+}\right)\left|T^{(2)}\right|^{2}\right\} \\
= & \frac{1}{(4 \pi)^{4}} \frac{1}{2 \pi s} \int d s^{\prime \prime} \int_{s_{3}^{-}}^{s_{3}^{+}} d s_{3} \int_{-1}^{1} d \cos (\theta) \int_{0}^{\pi} d \phi\left|T^{(2)}\right|^{2},
\end{aligned}
$$

with the phase space boundaries

$$
\begin{gathered}
4 m^{2} \leq s^{\prime \prime} \leq\left(\sqrt{s}-\sqrt{s^{\prime}}\right)^{2} \\
s_{3}^{ \pm}=\frac{1}{2}\left(s+s^{\prime}-s^{\prime \prime}+2 m^{2} \pm \sqrt{1-\frac{4 m^{2}}{s^{\prime \prime}}} \lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)\right)
\end{gathered}
$$

and $\lambda\left(s, s^{\prime}, s^{\prime \prime}\right)=s^{2}+s^{\prime 2}+s^{\prime \prime 2}-2 s s^{\prime}-2 s s^{\prime \prime}-2 s^{\prime} s^{\prime \prime}$.

Recalculation

Our Approach to the recalculation:

- Full integration over the phase space in $d=4$, i.e. no a-priori expansion in the electron mass.
- Through partial fractioning, the angular integrals can be mapped to the form

$$
I_{I, k}=\int_{0}^{\pi} d \theta \int_{0}^{\pi} d \phi \frac{\sin (\theta)}{[a+b \cos (\theta)]^{\prime}} \frac{1}{[A+B \cos (\theta)+C \sin (\theta) \cos (\phi)]^{k}}
$$

- All relevant integrals can be found in Beenakker et al., Phys. Rev. D40 (1989), but have been recalculated for the current calculation.
- For example one finds:

$$
\iota_{1,2}=\frac{2 \pi\left(a\left(B^{2}+C^{2}\right)-b A B\right)}{\left(A^{2}-B^{2}-C^{2}\right) X}+\frac{b(b A-a B) \pi}{X^{3 / 2}} \ln \left(\frac{a A-b B+\sqrt{X}}{a A-b B-\sqrt{X}}\right)
$$

with $X=(a A-b B)^{2}-\left(a^{2}-b^{2}\right)\left(A^{2}-B^{2}-C^{2}\right)$

- After rationalizing the appearing square root, one can integrate the first invariant with standard techniques.

Recalculation

Our Approach to the recalculation:

- Full integration over the phase space in $d=4$, i.e. no a-priori expansion in the electron mass.
- Three out of four integrations can be performed using standard techniques.
- The integrand of the last integral contains rational, logarithmic and polylogarithmic expressions with involved argument structures.
\Rightarrow The last integration is performed in terms of iterated integrals after determining the minimal set of contributing letters.

Iterated Integrals

- Iterated integrals can be recursively defined according to

$$
\mathrm{H}_{w_{1}, \ldots, w_{n}}(x)=\int_{0}^{x} d t f_{w_{n}}(t) \mathrm{H}_{w_{1}, \ldots, w_{n-1}}(x)
$$

- The letters w_{i} can in general be any function of t so that the integral on the right hand side is defined.
- The Kummer-Poincare (Goncharov) polylogarithms are defined by linear letters

$$
f_{w_{\mathrm{a}}}(t)=\frac{1}{t-a}, \quad a \in \mathbb{C}
$$

a special case are the harmonic polylogarithms Remiddi, Vermaseren (Int.J.Mod.Phys A15 (2000))

$$
f_{0}(t)=\frac{1}{t}, \quad \quad f_{1}(t)=\frac{1}{1-t}, \quad \quad f_{-1}(t)=\frac{1}{1+t} .
$$

- The letters can also contain square roots and dependence on external kinematic variables.
Ablinger, Blümlein, Raab, Schneider (J.Math.Phys. 55 (2014))
- Iterated integrals are solutions to differential equation which factorize into first order terms.

Recalculation

- For the current calculation we also have to introduce the modified iterated integral

$$
\tilde{\mathrm{H}}_{w_{1}, \ldots, w_{n}}(x)=\int_{x}^{1} d t f_{w_{n}}(t) \mathrm{H}_{w_{1}, \ldots, w_{n-1}}(x)
$$

- We want to use iterated integrals so we can work in a differential field.
- The steps to transform the last integrand to iterated integrals include:
- Express all logarithms and polylogarithms in terms of iterated integrals evaluated at the last integration variable through linear differential equations.
- Find relations between the occurring letters and square roots to get rid of redundancies.
- Compactify the integrand expressed in terms of iterated integrals as far as possible.
\rightarrow Since we express everything in linearly independent quantities, the complexity of the last integral can be drastically reduced in this step.
- Some integrands took up $\mathcal{O}(1 \mathrm{Mb})$ of disk space and the integration into iterated integrals needed $\mathcal{O}(1$ month $)$.
- In total we need 37 letters to express the contributions due to fermion pair production.

$$
\begin{aligned}
& v_{1}=\frac{1}{\sqrt{1-4 t} \sqrt{16 t^{2}-8(1+z) t+(1-z)^{2}}} \\
& v_{2}=\frac{1}{t \sqrt{1-4 t} \sqrt{16 t^{2}-8(1+z) t+(1-z)^{2}}} \\
& v_{3}=\frac{1}{\sqrt{1-4 t}(4 t-(1+x)) \sqrt{16 t^{2}-8(1+z) t+(1-z)^{2}}} \\
& v_{4}=\frac{1}{t \sqrt{1-t}}, \\
& d_{1}=\frac{1}{\sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{2}=\frac{t}{\sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{3}=\frac{1}{t \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{4}=\frac{1}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}} \\
& d_{5}=\frac{t}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}} \\
& d_{6}=\frac{1}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{7}=\frac{t}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{8}=\frac{1-z}{(4 \rho-(1-z) t) \sqrt{1-t}}, \\
& d_{9}=\frac{1}{\left(16 \rho^{2}+4(z-2 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t}}, \\
& d_{10}=\frac{t}{\left(16 \rho^{2}+4(z-2 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t}} \\
& d_{11}=\frac{1}{t \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{12}=\frac{1}{16 \rho^{2}+4(z-2 \rho(1+z)) t+(1-z)^{2} t^{2}}, \\
& d_{13}=\frac{t}{16 \rho^{2}+4(z-2 \rho(1+z)) t+(1-z)^{2} t^{2}}, \\
& d_{14}=\frac{1}{t(1-z)-4 \rho} \text {, } \\
& d_{15}=\frac{1}{\sqrt{1-t}(t(1-z)-4 \rho)}, \\
& d_{16}=\frac{1}{\sqrt{t(1-t)} \sqrt{t(1-z)^{2}-16 \rho^{2}}}, \\
& d_{17}=\frac{1}{\sqrt{t(1-t)}(t(1-z)-4 \rho) \sqrt{t(1-z)^{2}-16 \rho^{2}}},
\end{aligned}
$$

$d_{19}=\frac{1}{\sqrt{t}(t(1-z)-4 \rho) \sqrt{t(1-z)^{2}-16 \rho^{2}}}$,
$d_{20}=\frac{1}{\sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{21}=\frac{1}{\sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$
$d_{22}=\frac{\sqrt{t}}{\sqrt{t 1-z)^{2}-1\left(p^{2}\right.} \sqrt{t^{2}(-z)}}$
$d_{22}=\frac{\sqrt{t}}{\sqrt{t(1-z)^{2}-16 \rho^{2}} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{23}=\frac{\sqrt{t}}{\sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right)}$,
$d_{24}=\frac{1}{\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{25}=\frac{t}{\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{26}=\frac{1}{\sqrt{1-t}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{27}=\frac{t}{\sqrt{1-t}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{2 s}=\frac{1}{\sqrt{t} \sqrt{t(-1+z)^{2}-16 \rho^{2}} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{29}=\frac{1}{\sqrt{t} \sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right)}$,
$d_{30}=\frac{1}{\sqrt{t} \sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho(1+z) t+16 \rho^{2}}}$,
$d_{31}=\frac{\sqrt{t}}{\sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{32}=\frac{1}{t \sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$,
$d_{33}=\frac{t}{\sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}$.

$$
\begin{aligned}
& d_{1}=\frac{1}{\sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{2}=\frac{t}{\sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{3}=\frac{1}{t \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{4}=\frac{1}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{5}=\frac{t}{\left(16 \rho^{2}+(4 z-8 \rho(1+z)) t+(1-z)^{2} t^{2}\right) \sqrt{1-t} \sqrt{16 \rho^{2}-8 \rho(1+z) t+(1-z)^{2} t^{2}}}, \\
& d_{16}=\frac{1}{\sqrt{t(1-t)} \sqrt{t(1-z)^{2}-16 \rho^{2}}}, \\
& d_{17}=\frac{1}{\sqrt{t(1-t)}(t(1-z)-4 \rho) \sqrt{t(1-z)^{2}-16 \rho^{2}}}, \\
& d_{21}=\frac{1}{\sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{22}=\frac{\sqrt{t}}{\sqrt{t(1-z)^{2}-16 \rho^{2}} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{26}=\frac{1}{\sqrt{1-t}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{27}=\frac{t}{\sqrt{1-t}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{28}=\frac{1}{\sqrt{t} \sqrt{t(-1+z)^{2}-16 \rho^{2}} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{30}=\frac{1}{\sqrt{t} \sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho(1+z) t+16 \rho^{2}}}, \\
& d_{31}=\frac{\sqrt{t}}{\sqrt{t(1-z)^{2}-16 \rho^{2}}\left(t^{2}(1-z)^{2}-8 \rho(1+z) t+4 t z+16 \rho^{2}\right) \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{32}=\frac{1}{t \sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}}, \\
& d_{33}=\frac{t}{\sqrt{1-t} \sqrt{t^{2}(1-z)^{2}-8 \rho t(1+z)+16 \rho^{2}}} .
\end{aligned}
$$

- 16 of these letters introduce elliptic structures, since multiple square roots cannot be rationalized at once.
- In total we need 37 letters to express the contributions due to fermion pair production.
- The analytic results can be expanded in the electron mass.
- For the expansion one has to be careful not to simply expand the integrand of the iterated integral, since the integration boundary also depends on the mass.
- For the expansion we have a two stage procedure:

1. Expand the integrand in $\mathrm{m}^{2} / \mathrm{s}$. This term serves as a subtraction term.
2. Map the intgeration boundaries of the difference between the original integrand and the subtraction term to $(0,1)$ and again expand in $\mathrm{m}^{2} / \mathrm{s}$, this will lead to a non-vanishing contribution.

- The result is validated through numerical integration to a high accuracy.

The Non-Singlet Case

- The two diagrams given above are contributing to the non-singlet process.
- The electron pair in the final state completely factorizes from the phase space integration.
- This property allows to derive a compact one dimensional integral representation.

The Non-Singlet Case

$$
\left.\begin{array}{rl}
\frac{d \sigma^{(2), \mathrm{II}}(z, \rho)}{d s^{\prime}} & =\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} a^{2}\left\{\frac{64}{3} z(1-z)(1+z-4 \rho) \overline{\mathrm{H}}_{v_{4}, d_{7}}+\frac{256}{3} z \rho(1+z-4 \rho) \overline{\mathrm{H}}_{v_{4}, d_{6}}\right. \\
& +\frac{128 z\left(1-4 \rho^{2}\right)(1-z+2 \rho)(1-z-4 \rho)}{3(1-z)^{2}} \tilde{\mathrm{H}}_{d_{8}, d_{7}} \\
& +\frac{512 z \rho\left(1-4 \rho^{2}\right)(1-z+2 \rho)(1-z-4 \rho)}{3(1-z)^{3}} \tilde{\mathrm{H}}_{d_{8}, d_{6}} \\
& +\frac{16}{9(1-z)^{2}}\left[(1+z)^{2}\left(4-9 z+4 z^{2}\right)+2\left(9-16 z+13 z^{2}-2 z^{3}\right) \rho+32 \rho^{2}\right] \tilde{\mathrm{H}}_{d_{2}} \\
& +\frac{512 z \rho}{9(1-z)^{4}}\left[3(1-z)^{4} z-(1-z)^{3}\left(4+z^{2}\right) \rho-2\left(9-29 z+38 z^{2}-17 z^{3}+3 z^{4}\right) \rho^{2}\right. \\
& \left.-4(2-z)\left(3+6 z-5 z^{2}\right) \rho^{3}+16\left(7-8 z+9 z^{2}\right) \rho^{4}+128(3-z) \rho^{5}\right] \tilde{\mathrm{H}}_{d_{4}} \\
& -\frac{16}{9(1-z)^{4}}\left[3-34 z+129 z^{2}-212 z^{3}+129 z^{4}-34 z^{5}+3 z^{6}+8\left(2-16 z+9 z^{2}\right.\right. \\
& \left.\left.+4 z^{3}-5 z^{4}+2 z^{5}\right) \rho+16 z\left(12-13 z+18 z^{2}-z^{3}\right) \rho^{2}+32\left(1+22 z-7 z^{2}\right) \rho^{3}\right] \tilde{\mathrm{H}}_{d_{1}} \\
& -\frac{128 z}{9(1-z)^{4}}\left[1+7 z-47 z^{2}+86 z^{3}-47 z^{4}+7 z^{5}+z^{6}-2\left(7-55 z+54 z^{2}\right.\right. \\
& \left.+16 z^{3}-17 z^{4}+3 z^{5}\right) \rho-4\left(39-16 z+16 z^{2}+4 z^{3}+5 z^{4}\right) \rho^{2} \\
& \left.+16\left(8-23 z+22 z^{2}+9 z^{3}\right) \rho^{3}+128\left(7+2 z-z^{2}\right) \rho^{4}\right] \tilde{\mathrm{H}}_{d_{5}}-\frac{64}{3}(2 z+(1-z) \rho) \tilde{\mathrm{H}}_{d_{3}} \\
& +\left[\frac{16}{3 \sqrt{1-4 \rho}}(1+z-4 \rho) \tilde{\mathrm{H}}\right. \\
v_{4}
\end{array}+\frac{\left.32\left(1-4 \rho^{2}\right)(1-z+2 \rho)(1-z-4 \rho) \tilde{\mathrm{H}}_{d_{8}}\right]}{3(1-z)^{3} \sqrt{1-4 \rho}}\right] \begin{aligned}
& \times \ln \left(\frac{1-z-4 \rho-\sqrt{1-4 \rho} \sqrt{(1-z)^{2}-8(1+z) \rho+16 \rho^{2}}}{\left.\left.1-z-4 \rho+\sqrt{1-4 \rho} \sqrt{(1-z)^{2}-8(1+z) \rho+16 \rho^{2}}\right)\right\}}\right.
\end{aligned}
$$

The Non-Singlet Case

- The explicit expansion of the analytical result in the limit $m^{2} \ll s$ gives

$$
\begin{aligned}
\frac{d \sigma^{(2), I I}(z)}{d s^{\prime}} & =\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s}\left(\frac{\alpha}{4 \pi}\right)^{2}\left\{\frac{8}{3} \frac{1+z^{2}}{1-z} L^{2}-\left[\frac{16}{9} \frac{11-12 z+11 z^{2}}{1-z}-\frac{16}{3} \frac{1+z^{2}}{1-z} \mathrm{H}_{0}\right.\right. \\
& \left.-\frac{32}{3} \frac{1+z^{2}}{1-z} \mathrm{H}_{1}\right] L+\frac{32}{9(1-z)^{3}}\left(7-13 z+8 z^{2}-13 z^{3}+7 z^{4}\right) \\
& -\frac{16 z}{9(1-z)^{4}}\left(3-36 z+94 z^{2}-72 z^{3}+19 z^{4}\right) \mathrm{H}_{0}-\frac{8 z^{2}}{3(1-z)} \mathrm{H}_{0}^{2} \\
& +\left(\frac{32}{9} \frac{11-12 z+11 z^{2}}{1-z}+\frac{16}{3} \frac{2+z^{2}}{1-z} \mathrm{H}_{0}\right) \mathrm{H}_{1}+\frac{32}{3} \frac{1+z^{2}}{1-z} \mathrm{H}_{1}^{2}+\frac{16 z^{2}}{3(1-z)} \mathrm{H}_{0,1} \\
& \left.-\frac{16\left(2+3 z^{2}\right)}{3(1-z)} \zeta_{2}\right\}+\mathcal{O}\left(\frac{m^{2}}{s} L^{2}\right),
\end{aligned}
$$

with H the harmonic polylogarithms evaluated at argument z.

- The result contains higher denominator powers which have not been obtained by Berends et al.
- The result is in disagreement with Berends et al but agrees with the result from Bümlein et al using massive OMEs.
- Where does this disagreement come from?

The Non-Singlet Case

- The disagreement can be traced back to the neglection of initial state masses.
- The non-singlet phase space for particles with different masses in the initial and final state is given by

$$
\begin{aligned}
& \frac{d \sigma^{(2), I I}}{d s^{\prime}}=\frac{\sigma^{0}\left(s^{\prime}\right)}{s} a^{2} \int_{4 m_{f}^{2}}^{s(1-\sqrt{z})^{2}} d s^{\prime \prime} \frac{16}{3 s s^{\prime \prime} 2} \sqrt{1-\frac{4 m_{f}^{2}}{s^{\prime \prime}}}\left(2 m_{f}^{2}+s^{\prime \prime}\right)\{ \\
& -\frac{\lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)\left[2 s s^{\prime} s^{\prime \prime}+m_{i}^{2}\left(s^{2}+\left(s^{\prime}-s^{\prime \prime}\right)^{2}\right)+4 s m_{i}^{4}\right]}{s s^{\prime} s^{\prime \prime}+m_{i}^{2}\left(s^{2}+\left(s^{\prime}-s^{\prime \prime}\right)^{2}-2 s\left(s^{\prime}+s^{\prime \prime}\right)\right)} \\
& \left.+\frac{\left(s^{\prime}+s^{\prime \prime}\right)^{2}+4 m_{i}^{2}\left(s-s^{\prime}-s^{\prime \prime}\right)+s^{2}-8 m_{i}^{4}}{\beta\left(s-s^{\prime}-s^{\prime \prime}\right)} \ln \left(\frac{s-s^{\prime}-s^{\prime \prime}+\beta \lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)}{s-s^{\prime}-s^{\prime \prime}-\beta \lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)}\right)\right\}
\end{aligned}
$$

with $\beta=\sqrt{1-4 m_{i}^{2} / s}$.

- The disagreement can be traced back to the neglection of initial state masses.
- The non-singlet phase space for particles with different masses in the initial and final state is given by
- Neglecting initial state masses this expression reduces to

$$
\begin{aligned}
& \frac{d \sigma^{(2), I I}}{d s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s} a^{2} \int_{4 m^{2}}^{s(1-\sqrt{z})^{2}} d s^{\prime \prime} \frac{16}{3 s s^{\prime \prime} 2} \sqrt{1-\frac{4 m^{2}}{s^{\prime \prime}}}\left(2 m^{2}+s^{\prime \prime}\right)\{ \\
& \left.-2 \lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)+\frac{s^{2}+\left(s^{\prime}+s^{\prime \prime}\right)^{2}}{s-s^{\prime}-s^{\prime \prime}} \ln \left(\frac{s-s^{\prime}-s^{\prime \prime}+\lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)}{s-s^{\prime}-s^{\prime \prime}-\lambda^{1 / 2}\left(s, s^{\prime}, s^{\prime \prime}\right)}\right)\right\}
\end{aligned}
$$

- This formula is the starting point of Berends et al (it was derived in Kniehl et al, Phys. Lett. B209 (1988))
- It is valid for the production of heavy particles, like muons, but not for electron pair production.

In the pure-singlet case four diagrams contribute.

- The contributions of the left and right two diagrams contain mass divergences, their interference does not.
- The interference contribution in the limit $m^{2} \ll s$ can simply be obtained by expanding in $\mathrm{m}^{2} / \mathrm{s}$ and integrating the phase space.
- The squared contributions have to be treated as before, because of the more complicated topologies more involved letters are needed.

The Pure-Singlet Case

- The result expanded in $m^{2} \ll s$ is given by

$$
\begin{aligned}
& \frac{d \sigma^{(2), I I I}}{d s^{\prime}}=\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s}\left(\frac{\alpha}{4 \pi}\right)^{2}\left\{\left[\frac{4(1-z)\left(4+7 z+4 z^{2}\right)}{3 z}+8(1+z) \mathrm{H}_{0}\right] L^{2}+\left[-\frac{128(1-z)\left(1+4 z+z^{2}\right)}{9 z}\right.\right. \\
& \left.-\frac{8\left(4+6 z-3 z^{2}-8 z^{3}\right)}{3 z} \mathrm{H}_{0}-16(1+z) \mathrm{H}_{0}^{2}-\frac{16(1-z)\left(4+7 z+4 z^{2}\right)}{3 z} \mathrm{H}_{1}-32(1+z) \mathrm{H}_{0,1}+32(1+z) \zeta_{2}\right] L \\
& -\frac{2(1-z)}{27 z(1+z)^{2}}\left(80-303 z-721 z^{2}-789 z^{3}-163 z^{4}\right)-\left(\frac { 4 } { 9 z (1 +) ^ { 3 } } \left(40+183 z+339 z^{2}+527 z^{3}+825 z^{4}\right.\right. \\
& \left.\left.+462 z^{5}+64 z^{6}\right)-\frac{16\left(4+27 z+3 z^{2}-4 z^{3}\right)}{3 z} \mathrm{H}_{-1}+\frac{48\left(2+2 z+z^{2}\right)}{z} \mathrm{H}_{-1}^{2}\right) \mathrm{H}_{0}+\left(\frac{4\left(-12-21 z-12 z^{2}+4 z^{3}\right)}{3 z}\right. \\
& \left.+\frac{40\left(2+2 z+z^{2}\right)}{z} \mathrm{H}_{-1}\right) \mathrm{H}_{0}^{2}-\frac{8}{3}(3+5 z) \mathrm{H}_{0}^{3}+\left(\frac{256(1-z)\left(1+4 z+z^{2}\right)}{9 z}-\frac{8\left(-4-18 z+15 z^{2}+4 z^{3}\right)}{3 z} \mathrm{H}_{0}\right. \\
& \left.-\frac{8\left(4-6 z+3 z^{2}\right)}{z} \mathrm{H}_{0}^{2}\right) \mathrm{H}_{1}+\left(\frac{16(1-z)\left(4+7 z+4 z^{2}\right)}{3 z}-\frac{4\left(4-6 z+3 z^{2}\right)}{z} \mathrm{H}_{0}\right) \mathrm{H}_{1}^{2} \\
& +\left(\frac{8\left(4-6 z+9 z^{2}-12 z^{3}\right)}{3 z}+\frac{8\left(8+7 z^{2}\right)}{z} \mathrm{H}_{0}+\frac{8\left(4-6 z+3 z^{2}\right)}{z} \mathrm{H}_{1}\right) \mathrm{H}_{0,1}+\left(\frac{16\left(-4-27 z-3 z^{2}+4 z^{3}\right)}{3 z}\right. \\
& \left.-\frac{32(5-2 z)}{z} \mathrm{H}_{0}+\frac{96\left(2+2 z+z^{2}\right)}{z} \mathrm{H}_{-1}\right) \mathrm{H}_{0,-1}-\frac{32(2+z)}{z} \mathrm{H}_{0,0,1}+\frac{16\left(10-18 z-5 z^{2}\right)}{z} \mathrm{H}_{0,0,-1} \\
& -\frac{8\left(4-14 z-5 z^{2}\right)}{z} \mathrm{H}_{0,1,1}-\frac{96\left(2+2 z+z^{2}\right)}{z} \mathrm{H}_{0,-1,-1}+\left(\frac{8\left(-8+27 z+16 z^{3}\right)}{3 z}+16(7-3 z) \mathrm{H}_{0}\right. \\
& \left.\left.-\frac{8\left(4-6 z+3 z^{2}\right)}{z} \mathrm{H}_{1}-\frac{48\left(2+2 z+z^{2}\right)}{z} \mathrm{H}_{-1}\right) \zeta_{2}+32(5+z) \zeta_{3}\right\}+\mathcal{O}\left(\frac{m^{2}}{s} L^{2}\right) .
\end{aligned}
$$

- This result is again in disagreement with Berends et al but in agreement with the calculation by Blümlein et al using massive OMEs.

The Pure-Singlet Case

- Where does the disagreement come from?
- In the pure-singlet case a calculation done for massless partons was reused Schellekens, van Neerven (Phys.Rev. D21 (1980))
- We agree with the interference term, which does not contain any mass singularity, although it was used with the wrong sign in Berends et al.
- We disagree with the squared terms, which can be attributed to the neglection of mass effects going beyond the regularization of the integrals.

The Pure-Singlet-Non-Singlet Interference

- The last contribution of fermion pair production considered in Berends et al is the interference between the pure-singlet and non-singlet contributions.
- The expanded result is given by

$$
\begin{aligned}
\frac{d \sigma^{(2), \mathrm{IV}}}{d s^{\prime}} & =\frac{\sigma^{(0)}\left(s^{\prime}\right)}{s}\left(\frac{\alpha}{4 \pi}\right)^{2}\left\{-\left[8(8-7 z)+\frac{8\left(5-2 z^{2}\right)}{1-z} \mathrm{H}_{0}+\frac{8\left(1+z^{2}\right)}{1-z}\left(\mathrm{H}_{0}^{2}+2 \mathrm{H}_{0} \mathrm{H}_{1}\right.\right.\right. \\
& \left.\left.-2 \mathrm{H}_{0,1}+2 \zeta_{2}\right)\right] L+\frac{8\left(27-42 z+23 z^{2}\right)}{1-z}+\left[\frac{8}{(1-z)^{2}(1+z)}\left(3+10 z-11 z^{2}+22 z^{3}-8 z^{4}\right)\right. \\
& \left.+\frac{64(1+z)}{1-z} \mathrm{H}_{-1}\right] \mathrm{H}_{0}-\frac{8(1+z)^{2}}{1-z} \mathrm{H}_{0}^{2}-\frac{8\left(1+2 z^{2}\right)}{3(1-z)} \mathrm{H}_{0}^{3}+\left[16(8-7 z)-\frac{8\left(3-2 z-2 z^{2}\right)}{1-z} \mathrm{H}_{0}\right. \\
& \left.+\frac{16\left(2+z^{2}\right)}{1-z} \mathrm{H}_{0}^{2}\right] \mathrm{H}_{1}+\frac{16}{1-z} \mathrm{H}_{0} \mathrm{H}_{1}^{2}+\left[\frac{8\left(13-2 z-6 z^{2}\right)}{1-z}-\frac{16\left(5+4 z^{2}\right)}{1-z} \mathrm{H}_{0}+\frac{32 z^{2}}{1-z} \mathrm{H}_{1}\right] \mathrm{H}_{0,1} \\
& -\left[\frac{64(1+z)}{1-z}-\frac{32\left(1+z^{2}\right)}{1-z} \mathrm{H}_{0}\right] \mathrm{H}_{0,-1}+\frac{128\left(1+z^{2}\right)}{1-z} \mathrm{H}_{0,0,1}-\frac{64\left(1+z^{2}\right)}{1-z} \mathrm{H}_{0,0,-1} \\
& -\frac{32\left(1+2 z^{2}\right)}{1-z} \mathrm{H}_{0,1,1}-\left[\frac{24\left(3-2 z-2 z^{2}\right)}{1-z}+\frac{16\left(2+3 z^{2}\right)}{1-z} \mathrm{H}_{0}+\frac{32 z^{2}}{1-z} \mathrm{H}_{1}\right] \zeta_{2} \\
& \left.-\frac{16\left(3+z^{2}\right)}{1-z} \zeta_{3}\right\}+\mathcal{O}\left(\frac{m^{2}}{s} L\right) .
\end{aligned}
$$

- This term shows less of the higher powers in the denominator than found in Berends et al.

The Pure-Singlet-Non-Singlet Interference

- Where do these discrepancies come from?
- We do not have an OME associated with the pure-singlet non-singlet interference. It has to be combined with the photon emissions.
- Berends et al do not provide more details on the calculation of this particular contribution.
\rightarrow Probably the treatment of the mass expansion also lead to problems here.

Contributions not considered in Berends et al

- There are also contributions coming from the diagrams shown above, which have not been considered in Berends et al.
- We have the contributions from
- only these diagrams,
- their interference with the non-singlet (do only contribute for axial-vector couplings),
- their interference with the pure-singlet.
- These contributions do not contain mass singularities and can simply be expanded in the limit $m^{2} \ll s$ and have to agree with the massless calculation.
- We reproduce the results obtained in Hamberg et al, Nucl. Phys. B359 (1991).

Numerical Illustration

- Relative deviation of the non-singlet (red), pure-singlet (blue) and interference (magenta) contribution in \%.

Corrections due to Photon Emissiom

- The corrections due to photon emission can be decomposed into six parts:
- $\delta_{2}^{S_{2}}$, both photons are soft;
- $\delta_{2}^{V_{2}}$, both photons are virtual;
- $\delta_{2}^{S_{1} V_{1}}$, one photon is soft, one virtual;
- $\delta_{2}^{S_{1} H_{1}}$, one photon is soft, one hard;
- $\delta_{2}^{V_{1} H_{1}}$, one photon is virtual, one hard;
- $\delta_{2}^{H_{2}}$, both photons are hard.
- The complete cross section can be expressed as

$$
\begin{aligned}
\frac{d \sigma}{d s^{\prime}} & =\frac{\sigma^{(0)}}{s}\left(\frac{\alpha}{\pi}\right)^{2}\left\{\delta(1-z)\left[\delta_{2}^{S_{2}}(\Delta, \lambda)+\delta_{2}^{V_{2}}(\lambda)+\delta_{2}^{S_{1} V_{1}}(\Delta, \lambda)\right]\right. \\
& \left.+\theta(1-z-\Delta)\left[\delta_{2}^{S_{1} H_{1}}(\Delta, \lambda, z)+\delta_{2}^{V_{1} H_{1}}(\lambda, z)+\delta_{2}^{H_{2}}(\Delta, z)\right]\right\}
\end{aligned}
$$

- All contributions due to fermion pair production have been recalculated.
\rightarrow In the non-singlet and pure-singlet processes agreement with the method based on asymptotic factorization has been found.
\rightarrow Numerically the differences at $\mathcal{O}\left(\alpha^{2}\right)$ are not negligible even though the logarithmically enhanced terms are unaffected.
\Rightarrow Factorization in the asymptotic region works in the fermion-pair production channel also with massive external particles.
- The contributions due to axial couplings are work in progress. Since we work in $d=4$ no problems with γ_{5} arise.
- The last contribution due to photon production is work in progress.
\rightarrow All other terms have already been checked.

