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> We revisit the initial state corrections to et e annihilation to a neutral vector

boson.

» This corrections are important for the prediction of the Z-boson peak and for
t t production at LEP, ILC and FCC-ee, and at Higgs factories through

ete” = Z* H.



Theory of Initial State Radiation

We look at the process:

e + et = /2 - T 4+ fF J

with the invariants

(- +pi)° =s, p> =pi=m;, =5

The initial state radiation (ISR) of n particles can be described according to the
Drell-Yan mechanism

do a9(s’ 1 2
o= % /d4q5+(q2 - S’)(zﬁ)y, H/d4ki5+(k;2 —m?)s® (p— +pr —q— K) | TP
i=1

where 0°(s’) describes the leading order process and T(") the matrix element of

the ISR process.



The O(«) Corrections

The first radiative corrections come from the process

et +e = A/Z + 1.
To stay in d = 4, we can split the contributions into hard, soft and virtual
photons.

The hard part is characterized by demanding

The soft and virtual parts of the cross section have to be made infrared finite
by introducing a small photon mass .
The cross section is then given by

doW: ds0) o
ds' s <7
The result is given by

1),/ (0)
I s n) (24 2w 2 (e

ds’ s

1O(1—z— )11+22(L71)] +o(’”§>

Y[ =2 (5300 2) + 81 ()) + 00 - z— 2)8t'(2)] .

T

—Zz

with L = In(s/m2).



Why is it a 'revisit'?

ISR corrections have been calculated up to O(a?) in the asymptotic limit
m?/s < 1 with two different techniques:
1. Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))

> Full calculation with massive electrons in the limit m? < s calculation in d = 4
with soft-hard separation, including soft and virtual photons, hard
bremsstrahlung, as well as fermion pair production.

> Expansion in m? < s on integrand level (no details given).



Why is it a 'revisit'?

ISR corrections have been calculated up to O(a?) in the asymptotic limit
m?/s < 1 with two different techniques:
1. Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))

> Full calculation with massive electrons in the limit m? < s calculation in d = 4
with soft-hard separation, including soft and virtual photons, hard
bremsstrahlung, as well as fermion pair production.

> Expansion in m2 < s on integrand level (no details given).

2. Bliimlein, De Freitas, van Neerven (Nucl. Phys. B855 (2012))

> Direct calculation of the asymptotic limit m? < s using massive light-cone
operator matrix elements.

> The technique is based on asymptotic factorization.
Buza, Matiounine, Smith, Migneron, van Neerven (Nucl.Phys. B472 (1996))

> It was already used in Berends et al, but only for the logarithmically
enhanced terms, claiming it works only at that level.



Factorization in the Asymptotic Region

In the asymptotic region m? < s the cross section factorizes

doj(s') _ o9(s') 2 s’ 1w
T:f;ﬂ,; Z,Fg QT | z, /IZ ®Fk,j Z,Fg

into
0 massless cross sections 7 (z. /’1—>
Hamberg, van Neerven, Matsuura (Nucl. Phys. B359 (1991))
Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))

. . 2 .
0 massive operator matrix elements [';; (z7 %) which carry all mass dependence
e

Bliimlein, De Freitas, van Neerven (Nucl.Phys. B855 (2012))

o©(s') is the Born cross section and the Mellin convolution @ is given by

dz f(z1)g(22)0(z — z122).

O\H

f(z) @ g(z) = /1d21



Factorization in the Asymptotic Region
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> The technique has been used to derive deep-inelastic scattering (DIS)
structure functions in the asymptotic limit @ > m’ up to O(a?).

> In the context of DIS proven to work at a2 in the
o non-singlet process
Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997) )
Bliimlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016) )
o pure-singlet process

Bliimlein, De Freitas, Raab, Schonwald (Nucl.Phys. B945 (2019))
through analytic calculations.



Factorization in the Asymptotic Region

The comparison between both calculations shows:

> the one-loop, i.e. O(«), results agree between both calculations

> the logarithmically enhanced terms at two-loops (O(a?)) agree between both
calculations

> the constant terms do not agree

= breakdown of asymptotic factorization or calculation errors?



The O(a?) Corrections

> In Berends et al the O(a?) corrections have been split up into four distinct

processes:
o , photon radiation
o , non-singlet fermion pair production
o , pure-singlet fermion pair production
o , interference between non-singlet and pure-singlet fermion pair
production

» In the calculation of Bliimlein et al (Nucl. Phys. B855 (2012)) process | and
are combined owed to the nature of the OMEs.

> In the following we will present the calculation of fermion pair production, i.e.
processes



Recalculation

Our Approach to the recalculation: J

> Full integration over the phase space in d = 4, i.e. no a-priori expansion in the

electron mass.

o The phase space can be parametrized as

/dPg /d“ /d4 /d4k+{ (¢ —s') 5 (k2 —m?) 5 (k2 —m

x 8®) (p- +pr —q— k- —ky) IT(2)|2}

1 1 5; 1 T
= (4w)4%/ds”/d53/dcos(9)/d¢\T(2) 2
s -1 0

with the phase space boundaries

am? < s < (Vs — Vs')?,

1 4m?
5§ = 5 s+s —s" +2m*+ 1—7)\1/2(575'75”)
\ s

and A(s,s’,s") =s2 + s’ + s/ 2 — 2ss' — 255" — 25/s".




Recalculation

>

Our Approach to the recalculation: )

Full integration over the phase space in d = 4, i.e. no a-priori expansion in the
electron mass.

Through partial fractioning, the angular integrals can be mapped to the form

sin(0) 1
"“/ “’9/ (2 + beos(®)] [A + Beos(6) + Csin(9) cos(s)]*

All relevant integrals can be found in Beenakker et al., Phys. Rev. D40 (1989) ,
but have been recalculated for the current calculation.

For example one finds:

_ 2m(a(B*>+ C?) — bAB) L b(bA—aB)r | [aA—bB+ VX
2T (Ao B - )X X3/2 aA— bB — VX

with X = (aA — bB)? — (a*> — b*)(A*> — B® — C?)

After rationalizing the appearing square root, one can integrate the first
invariant with standard techniques.



Recalculation

Our Approach to the recalculation: J

> Full integration over the phase space in d = 4, i.e. no a-priori expansion in the
electron mass.

» Three out of four integrations can be performed using standard techniques.

» The integrand of the last integral contains rational, logarithmic and
polylogarithmic expressions with involved argument structures.

> The last integration is performed in terms of iterated integrals after
determining the minimal set of contributing letters.



Iterated Integrals

> Iterated integrals can be recursively defined according to

X
Hu () = [ i (0) o ).
0

» The letters w; can in general be any function of t so that the integral on the
right hand side is defined.

> The polylogarithms are defined by linear
letters
1
t—a’

fWa (t) =

a special case are the harmonic polylogarlthms
Remiddi, Vermaseren (Int.J.Mod.Phys A15 (2000)

aeC

1 1
fo(t) = =, fA(t) = —,
o(t) t 1(t) 1—-t Fa(t) = 14+t
» The letters can also contain square roots and dependence on external

kinematic variables.
Ablinger, Bliimlein, Raab, Schneider (J.Math.Phys. 55 (2014))

> Iterated integrals are solutions to differential equation which factorize into first
order terms.



Recalculation

» For the current calculation we also have to introduce the modified iterated
integral

1
Pl s () = [ iy (0) o )

> We want to use iterated integrals so we can work in a differential field.
» The steps to transform the last integrand to iterated integrals include:
o Express all logarithms and polylogarithms in terms of iterated integrals

evaluated at the last integration variable through linear differential equations.

o Find relations between the occurring letters and square roots to get rid of
redundancies.

o Compactify the integrand expressed in terms of iterated integrals as far as
possible.
— Since we express everything in linearly independent quantities, the
complexity of the last integral can be drastically reduced in this step.

> Some integrands took up (1 Mb) of disk space and the integration into
iterated integrals needed O(1 month).

» In total we need to express the contributions due to fermion pair
production.
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16 of these letters
introduce elliptic
structures, since
multiple square roots
cannot be rationalized
at once.



In total we need to express the contributions due to fermion pair
production.

The analytic results can be expanded in the electron mass.

For the expansion one has to be careful not to simply expand the integrand of
the iterated integral, since the integration boundary also depends on the mass.

For the expansion we have a two stage procedure:
1. Expand the integrand in m?/s. This term serves as a subtraction term.
2. Map the intgeration boundaries of the difference between the original integrand
and the subtraction term to and again expand in m?/s, this will lead to a
non-vanishing contribution.

The result is validated through numerical integration to a high accuracy.



The Non-Singlet Case

> The two diagrams given above are contributing to the non-singlet process.

» The electron pair in the final state completely factorizes from the phase space
integration.

» This property allows to derive a compact one dimensional integral
representation.



The Non-Singlet Case
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+

3 — 34z + 12927 — 2122% +1292* — 342° 4+ 32° + 8(2 — 162 + 922

oy ~ 64 -
+16(8 — 23z + 222° 4 92°) p* 4 128(7 + 22 — 22)p4] Ha, — ?(22 + (1 —z)p)Hq,

321 —4p) (1~ =2+ 29) (1~ = —dp) ]
31— 23 /I—1p “

16 -
+ [ﬁ(l +2z—4p)H,, +
N e VI—1Ip\/(1—2)2 = 8(1 + 2)p + 16p?

1—z—dp+/T—apy/(1—2)2 = 8(1 + 2)p + 1602




The Non-Singlet Case

> The explicit expansion of the analytical result in the limit m? < s gives

ds’ s

0

do@(z)  O)(s") (a )2 {8 1422, [g 1112z 41122 16142
31—z

an 3 9 1-z 31—z

321+ 22 32 2 3 4
-= Hi|L+ ——(7—-132+822 - 132 +7
31—z 1] +9(1—z)3( z+8z 2 +727)
16z ) 3 4 822
- ————(3-36z+942° — 72 19z2YHp — ———H
9(172)4( 2494z 2> +192%)Ho 3(1—z) ©
3211 —12z+ 1122 16 2 + 22 321+22 , 1622
= — Ho |H1 + = H H
(9 1-z 31z )ty gyt

16(2 + 32%) m?
‘3(1z)<2}+0(sL)’

with H the harmonic polylogarithms evaluated at argument z.

» The result contains higher denominator powers which have not been obtained
by Berends et al.

» The result is in disagreement with Berends et al but agrees with the result
from Biimlein et al using massive OMEs.

» Where does this disagreement come from?



The Non-Singlet Case

> The disagreement can be traced back to the neglection of initial state masses.

» The non-singlet phase space for particles with different masses in the initial

and final state is given by

s(1—vz)?
do (2l _ UO(SI) 2

ds’ s

4m;2

M/2(s, 8", s") 255" 5" + m2(s2 + (s' — ")) + 4s m*]

ss's" + m?(s2+ (s’ —s"")2 —2s(s' + "))
n (5" +s")2+4m?(s —s' —s") + s> —8m;*

16 4mf
/ ds” 302 1/1— —(2m¢? s”){

Bs—s — )

with 8 = /1 —4m;?/s.

s§s—S — 5§

| s—s —s" 4+ BAV2(s, s, s")
n ’ //75}\1/2(5’517511) ’



The

Non-Singlet Case

The disagreement can be traced back to the neglection of initial state masses.

The non-singlet phase space for particles with different masses in the initial
and final state is given by

Neglecting initial state masses this expression reduces to
s(1—vz)
do@l _ o0 (s) 2 / o 16 i a2 (2 4 5")
ds’ s 3s s s
4m?

o2 g g S S (s s N5 85\ |
(s,8",s") +
s—s' — s S_s/_su_)\l/Z(s’s/’s//)

This formula is the starting point of Berends et al (it was derived in Kniehl et
al, Phys. Lett. B209 (1988) )

It is valid for the production of heavy particles, like muons, but not for
electron pair production.



The Pure-Singlet Case

» In the pure-singlet case four diagrams contribute.

» The contributions of the left and right two diagrams contain mass
divergences, their interference does not.

> The interference contribution in the limit m> < s can simply be obtained by
expanding in m2/s and integrating the phase space.

» The squared contributions have to be treated as before, because of the more
complicated topologies more involved letters are needed.



The Pure-Singlet Case

> The result expanded in m*> < s is given by

ﬂ 3 % (i)z{[4(lfz)(4+7z+4zz)

ds’ s 47 3z

128(1 — 2)(1 + 4z + 2°)

+8(1+ z)Ho] 12+ [
9z
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2(1 -z 4
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5 6. 16(4 427z 4322 — 42°%) 48(2+2z+2%) , 4( — 12 — 21z — 1222 1 423)
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3z 3z
40(2 + 2z + 22 8 256(1 — z)(1 + 4z + 2° 8( — 4 — 18z + 1522 + 42°
+7( )H,1>H§7—(3+52)Hg+( ( ) ) _ & )Hg
z 3 9z 3z
8(4 — 62 + 322 16(1 — 2) (4 + 7z + 422 4(4 — 6z 4 322
B i)+ (1002 )4 o)
z 3z z
8(4 — 6z +92° —122%)  8(8+72%) 8(4 — 6z +32%) 16( — 4 — 27z — 322 + 42%)
+( + Ho + H1>H0,1+(
3z 3z
32(5 — 22) 96(2 + 2z + 2%) 32(2 + 2) 16(10 — 18z — 522)
— Ho + H,1>H0,,1 — Ho,0,1 + Ho,0,—1
z z z z
8(4 — 14z — 52°) 96(2 + 2z + 2%) 8( — 8+ 27z + 162%)
- Ho,1,1 — Ho,—1,—1+ (= ——— +16(7 = 32)Ho
z z 4

48(2 4 2z + 2%)

_ 2 2
_8(4—6z+3z )H1 - H,1>gz +32(5+z)<3} o) (m—ﬂ) )
z z s
»

This result is again in disagreement with Berends et al but in agreement with
the calculation by Bliimlein et al using massive OMEs.




The Pure-Singlet Case

» Where does the disagreement come from?

» In the pure-singlet case a calculation done for massless partons was reused
Schellekens, van Neerven (Phys.Rev. D21 (1980) )
o We agree with the interference term, which does not contain any mass
singularity, although it was used with the wrong sign in Berends et al.

o We disagree with the squared terms, which can be attributed to the neglection
of mass effects going beyond the regularization of the integrals.



The Pure-Singlet—Non-Singlet Interference

» The last contribution of fermion pair production considered in Berends et al is
the interference between the pure-singlet and non-singlet contributions.
> The expanded result is given by

(2),Iv (0)(/ 2 _ 2 2
g _ ) (i> {7 {8(8 —7)+ 8(51 NP Ch k0 WOV JPINTS
— Z z

ds’ s 4 1—
8(27 — 42z + 232%)
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1—2z (1—-2)2(1+2)

— 2Ho 1 + 2g2)] L+

8(3 — 2z — 222)

64(1 + z) ] 8(1+2)2 , 8(1+22%) ;5 [
——TH_q [Hp — - HS + |16(8 — 72) — H
1z MO T YT g 0 ( ) 1-z 0
16(2+2%) , 16 5 [8(13—2z—62%) 16(5 + 42?) 3272
+ T2 2 H [Hy + ———HoHT + - Ho + Hi|Ho1
1—-2z 1—-2z 1—-2z 1—-=z 1—-=z
64(1+2z) 32(1+2%) 128(1 + 2%) 64(1 + %)
—|—/———— — ——Ho HO,—l + 7H0,0,1 - 7H0,0‘—1
1—-2z 1—-=z 11—z 1—-=z
32(1 + 22%) 24(3 — 2z —22%)  16(2 +32%) 3222
- 0,1,1 — + Ho + Hi |2
1—2z 1—-z 1—2z -z

2 2
_16(3+z )43}+(’) <1L> '
11—z s
» This term shows less of the higher powers in the denominator than found in
Berends et al.



The Pure-Singlet—Non-Singlet Interference

» Where do these discrepancies come from?

» We do not have an OME associated with the pure-singlet non-singlet
interference. It has to be combined with the photon emissions.

> Berends et al do not provide more details on the calculation of this particular
contribution.

—> Probably the treatment of the mass expansion also lead to problems here.



Contributions not considered in Berends et al

» There are also contributions coming from the diagrams shown above, which
have not been considered in Berends et al.
» We have the contributions from
o only these diagrams,
o their interference with the non-singlet (do only contribute for axial-vector
couplings),
o their interference with the pure-singlet.
» These contributions do not contain mass singularities and can simply be
expanded in the limit m? < s and have to agree with the massless calculation.

> We reproduce the results obtained in Hamberg et al, Nucl. Phys. B359 (1991).



Numerical Illustration
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Corrections due to Photon Emissiom

> The

O O O 0 O ©o

> The

corrections due to photon emission can be decomposed into six parts:

5252, both photons are soft; v

62\/2, both photons are virtual;, v

5251\/1, one photon is soft, one virtual;, v
6251H1, one photon is soft, one hard;
6¥1Hl, one photon is virtual, one hard;
55’2, both photons are hard. v

complete cross section can be expressed as

do _o© (2)2 {5(1 - 2) {6252(A, A) + 652 (N) + 5251"1(A,A)}

ds’ s s

+6(1—z—A) [6251H1(A, A 2) + 651 (N 2) + 852 (4, z):| }



Conclusions and Outlook

(3

All contributions due to fermion pair production have been recalculated.

In the non-singlet and pure-singlet processes agreement with the method
based on asymptotic factorization has been found.

Numerically the differences at (’)(aQ) are not negligible even though the
logarithmically enhanced terms are unaffected.

Factorization in the asymptotic region works in the fermion-pair production
channel also with massive external particles.

The contributions due to axial couplings are work in progress. Since we work
in d = 4 no problems with ~s arise.

The last contribution due to photon production is work in progress.

All other terms have already been checked.



