

TOP-QUARK HADROPRODUCTIONLoopFest XVIII, 14.08.19Innuclear

Simone Devoto - University of Zürich

In collaboration with: S. Catani, M. Grazzini, S. Kallweit, J. Mazzitelli, H. Sargsyan

CONTENTS

Introduction;

- ► q_T subtraction formalism;
- ► q_T subtraction formalism for heavy quark production;
- Inclusive cross section;
- Differential distributions;
- Summary and outlook.

WHY TOP PAIR PRODUCTION AT NNLO?

Top quark production is of great importance at hadron colliders:

Standard Model Studies	 strong coupling with the Higgs boson; top mass is a fundamental parameter; standard candle at LHC. 		
BSM Studies	 possible window on new physics; 		
	background to new physics searches.		

Top pair production is the main source of top events at LHC:

• 3 times larger than single top production;

• at LHC about 15 $t\bar{t}$ pairs produced per second .

QCD CORRECTIONS: THEORETICAL STATUS

Focusing on on-shell top pair production:

► NLO QCD:

- Total Cross Section [P. Nason, S. Dawson, R. K. Ellis (1988)],[...]
- Differential distribution [M. L. Mangano, P. Nason and G. Ridolfi (1992)], [...]

► NNLO QCD:

- Total Cross Section [M. Czakon, P. Fiedler, A. Mitov (2013)]
- Differential distributions [M. Czakon, P. Fiedler and A. Mitov (2015), M. Czakon, P. Fiedler, D. Heymes and A. Mitov (2016); M. Czakon, D. Heymes and A. Mitov (2017)]

NEW: NNLO QCD using qT subtraction

[S. Catani, SD, M. Grazzini, S. Kallweit, J. Mazzitelli, H. Sargsyan: 1901.04005; S. Catani, SD, M. Grazzini, S. Kallweit, J. Mazzitelli: 1906.06535]

WHY TOP PAIR PRODUCTION AT NNLO... AGAIN?

NNLO QCD corrections for on shell $t\bar{t}$ production are known.

Why a new computation?

Very difficult computation, only one group able to complete it

until now [Bärnreuther, Czakon, Mitov (2012); Czakon, Mitov (2012); Czakon, Fiedler, Mitov (2013); Czakon, Fiedler, Heymes, Mitov (2015, 2016); ...]

See talk by A. Mitov for recent developments!

An independent check is always useful;

► No public available NNLO generator yet.

TOP PAIR PRODUCTION AT NNLO – INGREDIENTS

The q_T subtraction formalism is a method to handle and cancel IR divergences, originally developed for **colorless** final states.

Extra singularities of NNLO type associated to the $q_t \rightarrow 0$ limit need additional subtraction. IR behaviour known from q_t resummation formalism allow us to construct a counterterm. [J. C. Collins, D. E. Soper G. Sterman (1985); G. Bozzi, S. Catani, D. de Florian, M. Grazzini (2005)]

7/24

[devoto:/mnt/runs2/devoto/MATRIX_v1.0.0] ./matrix

[M.Grazzini, S. Kallweit, M. Wiesemann: arXiv 1711.06631]

Computational framework which, implementing q_T subtraction, allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a color singlet in next-to-nextto-leading order (NNLO) QCD.

<<MATRIX-MAKE>> This is the MATRIX process compilation.

<<MATRIX-READ>> Type process_id to be compiled and created. Type "list" to show available processes. Try pressing TAB for auto-completion. Type "exit" or "quit" to stop.

|=====>>>

[M.Grazzini, S. Kallweit, M. Wiesemann: arXiv 1711.06631]

Computational framework which, implementing q_T subtraction, allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a color singlet in next-to-nextto-leading order (NNLO) QCD.

<<MATRIX-MAKE>> This is the MATRIX process compilation

< <matrix-read>></matrix-read>	Type process_id to be compiled and created. Type "list" to show
	available processes. Try pressing TAB for auto-completion. Type
	"exit" or "quit" to stop.

|====>> list

process_id		process	11	description
pph21	>>	рр> Н	>>	on-shell Higgs production
ppz01	>>	p p> Z	>>	on-shell Z production
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM
ppeex02	>>	p p> e^- e^+	>>	Z production with decay
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with decay and CKM
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay
ppnenexa03	>>	p p> v_e^- v_e^+ gamma	>>	Z gamma production with decay
ppenexa03	>>	p p> e^- v_e^+ gamma	>>	W- gamma production with decay
ppexnea03	>>	p p> e^+ v_e^- gamma	>>	W+ gamma production with decay
ppzz02	>>	p p> Z Z	>>	on-shell ZZ production
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production
ppemexmx04	>>	p p> e^- mu^- e^+ mu^+	>>	ZZ production with decay
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with decay
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with decay
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^- v_e^+	>>	WW production with decay
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay
ppemexnmx04	>>	p p> e^- mu^- e^+ v_mu^+	>>	W-Z production with decay
ppeeexnex04	>>	p p> e^- e^- e^+ v_e^+	>>	W-Z production with decay
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_mu^-	>>	W+Z production with decay
ppeexexne04	>>	p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay

[M.Grazzini, S. Kallweit, M. Wiesemann: arXiv 1711.06631]

Computational framework which, implementing q_T subtraction, allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a color singlet in next-to-nextto-leading order (NNLO) QCD.

<<MATRIX-MAKE>> This is the MATRIX process compilation

< <matrix-read>></matrix-read>	Type process_id to be compiled and created. Typ	e "list" to show
	available processes. Try pressing TAB for atto-	completion. Type
	"exit" or "quit" to stop.	
	지 말할 수 있는 것 같아요. 이 것 이 것 같아요. 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이	

process_id		process		description
pph21	>>	рр —> Н	>>	on-shell Higgs production
ppz01	>>	p p> Z	>>	on-shell Z production
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM
ppeex02	>>	p p> e^- e^+	>>	Z production with decay
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with decay and CKM
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay
ppnenexa03	>>	p p> v_e^- v_e^+ gamma	>>	Z gamma production with decay
ppenexa03	>>	p p> e^- v_e^+ gamma	>>	W- gamma production with decay
ppexnea03	>>	p p> e^+ v_e^- gamma	>>	W+ gamma production with decay
ppzz02	>>	p p> Z Z	>>	on-shell ZZ production
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production
ppemexmx04	>>	p p> e^- mu^- e^+ mu^+	>>	ZZ production with decay
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with decay
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with decay
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^- v_e^+	>>	WW production with decay
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay
ppemexnmx04	>>	p p> e^- mu^- e^+ v_mu^+	>>	W-Z production with decay
ppeeexnex04	>>	p p> e^- e^- e^+ v_e^+	>>	W-Z production with decay
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_mu^-	>>	W+Z production with decay
ppeexexne04	>>	p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay
1	22			

[M.Grazzini, S. Kallweit, M. Wiesemann: arXiv 1711.06631]

Computational framework which, implementing q_T subtraction, allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders where the final state is a color singlet in next-to-nextto-leading order (NNLO) QCD.

► Munich (S. Kallweit);

- OpenLoops2 (F. Buccioni, J.N. Lang, J.Lindert, P. Maierhofer, S. Pozzorini, H. Zhang, M. F. Zoller);
- ► TDHPL, GiNaC, VVAMP, ...

• • (

<<MATRIX-MAKE>> This is the MATRIX process compilation

< <matrix-read>></matrix-read>	Type process_id to be compiled and	d created. Type "list" to show
	available processes. Try pressing	TAB for auto-completion. Type
	"exit" or "quit" to stop.	

|========>> list

process_id	Ш	process	Ш	description
pph21	>>	рр> Н	>>	on-shell Higgs production
ppz01	>>	p p> Z	>>	on-shell Z production
ppw01	>>	p p> W^-	>>	on-shell W- production with CKM
ppwx01	>>	p p> W^+	>>	on-shell W+ production with CKM
ppeex02	>>	p p> e^- e^+	>>	Z production with decay
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay
ppenex02	>>	p p> e^- v_e^+	>>	W- production with decay and CKM
ppexne02	>>	p p> e^+ v_e^-	>>	W+ production with decay and CKM
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay
ppnenexa03	>>	p p> v_e^- v_e^+ gamma	>>	Z gamma production with decay
ppenexa03	>>	p p> e^- v_e^+ gamma	>>	W- gamma production with decay
ppexnea03	>>	p p> e^+ v_e^- gamma	>>	W+ gamma production with decay
ppzz02	>>	p p> Z Z	>>	on-shell ZZ production
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production
ppemexmx04	>>	p p> e^- mu^- e^+ mu^+	>>	ZZ production with decay
ppeeexex04	>>	p p> e^- e^- e^+ e^+	>>	ZZ production with decay
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v_mu^+	>>	ZZ production with decay
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^- v_e^+	>>	WW production with decay
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay
ppemexnmx04	>>	p p> e^- mu^- e^+ v_mu^+	>>	W-Z production with decay
ppeeexnex04	>>	p p> e^- e^- e^+ v_e^+	>>	W-Z production with decay
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_mu^-	>>	W+Z production with decay
ppeexexne04	>>	p p> e^- e^+ e^+ v_e^-	>>	W+Z production with decay

[M.Grazzini, S. Kallweit, M. Wiesemann: arXiv 1711.06631]

WHAT ABOUT TOP PAIR PRODUCTION?

► Munich (S. Kallweit);

- OpenLoops2 (F. Buccioni, J.N. Lang, J.Lindert, P. Maierhofer, S. Pozzorini, H. Zhang, M. F. Zoller);
- ► TDHPL, GiNaC, VVAMP, ...

\textbf{Q}_T subtraction for colorful massive final states

With the inclusion of extra contributions, q_T subtraction formalism can be extended to **massive colored** final states.

Successfully applied to top pair production at NLO and NNLO considering only off-diagonal channels. [R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan, A. Torre (2015)]

\boldsymbol{Q}_T subtraction for colorful massive final states

What was missing to fully implement q_T subtraction at NNLO for top pair production?

IR behaviour known from studies in q_t resummation [A. Ferroglia, M. Neubert, B. D. Pecjak, L. L. Yang (2009)]; [Hai Tao Li, Chong Sheng Li, Ding Yu Shao, Li Lin Yang, Hua Xing Zu (2013)]; [S. Catani, M. Grazzini, A. Torre (2014)]

Contains the integrations of the additional final-state soft singularities. We recently completed their computation. [S. Catani, SD, M.Grazzini, J.Mazzitelli, in preparation. See also R. Angeles-Martinez, M. Czakon, S. Sapeta (2018)]

HARD COLLINEAR COEFFICIENT

- > We are only interested in the low q_T behaviour -> soft limit;
- ► We need to integrate the **soft current** in the case of:
 - Double gluon emission; [S.Catani, M.Grazzini (1999); M. Czakon (2011)]
 - Light quark pair production; [S.Catani, M.Grazzini (1999)]
 - Gluon emission at one loop. [I. Bierenbaum, M. Czakon, A. Mitov (2011); M. Czakon, A Mitov (2019)]

Example: $t\bar{t}$ production at **NLO** within q_T subtraction formalism:

Computation of the soft contribution

Integration of a suitably subtracted soft current.

$$\left[\frac{d^{n}k}{2\pi^{n-1}}\delta_{+}(k)\left|J_{sub}(k)\right|^{2}e^{i\overrightarrow{b}\cdot\overrightarrow{k}_{T}}\right]$$

$$J_{sub}(k)\Big|^{2} = \sum_{j=3,4} \frac{m_{j}^{2}}{(p_{j} \cdot k)^{2}} \mathbf{T}_{j}^{2} + \frac{2 p_{3} \cdot p_{4}}{p_{3} \cdot k \, p_{4} \cdot k} \mathbf{T}_{3} \cdot \mathbf{T}_{4} + \sum_{\substack{i=1,2\\j=3,4}} \frac{2}{p_{i} \cdot k} \left(\frac{p_{i} \cdot p_{j}}{p_{j} \cdot k} - \frac{p_{1} \cdot p_{2}}{(p_{1} + p_{2}) \cdot k}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}$$

Example: $t\bar{t}$ production at **NLO** within q_T subtraction formalism:

Computation of the soft contribution

Integration of a suitably subtracted soft current.

$$\left[\frac{d^{n}k}{2\pi^{n-1}}\delta_{+}(k)\left|J_{sub}(k)\right|^{2}e^{i\overrightarrow{b}\cdot\overrightarrow{k}_{T}}\right]$$

$$\left|J_{sub}(k)\right|^{2} = \sum_{j=3,4} \left(\frac{m_{j}^{2}}{(p_{j} \cdot k)^{2}} \mathbf{T}_{j}^{2}\right) + \frac{2p_{3} \cdot p_{4}}{p_{3} \cdot k p_{4} \cdot k} \mathbf{T}_{3} \cdot \mathbf{T}_{4} + \sum_{\substack{i=1,2\\j=3,4}} \frac{2}{p_{i} \cdot k} \left(\frac{p_{i} \cdot p_{j}}{p_{j} \cdot k} - \frac{p_{1} \cdot p_{2}}{(p_{1} + p_{2}) \cdot k}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}$$

Example: $t\bar{t}$ production at **NLO** within q_T subtraction formalism:

Computation of the soft contribution

Integration of a suitably subtracted soft current.

$$\left[\frac{d^{n}k}{2\pi^{n-1}}\delta_{+}(k)\left|J_{sub}(k)\right|^{2}e^{i\overrightarrow{b}\cdot\overrightarrow{k}_{T}}\right]$$

$$\left|J_{sub}(k)\right|^{2} = \sum_{j=3,4} \frac{m_{j}^{2}}{(p_{j} \cdot k)^{2}} \mathbf{T}_{j}^{2} + \underbrace{\frac{2p_{3} \cdot p_{4}}{p_{3} \cdot k \, p_{4} \cdot k}}_{p_{3} \cdot k \, p_{4} \cdot k} \mathbf{T}_{3} \cdot \mathbf{T}_{4} + \sum_{\substack{i=1,2\\j=3,4}} \frac{2}{p_{i} \cdot k} \left(\frac{p_{i} \cdot p_{j}}{p_{j} \cdot k} - \frac{p_{1} \cdot p_{2}}{(p_{1} + p_{2}) \cdot k}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}$$

Example: $t\bar{t}$ production at **NLO** within q_T subtraction formalism:

Computation of the soft contribution

Integration of a suitably subtracted soft current.

$$\left[\frac{d^{n}k}{2\pi^{n-1}}\delta_{+}(k)\left|J_{sub}(k)\right|^{2}e^{i\overrightarrow{b}\cdot\overrightarrow{k}_{T}}\right]$$

$$\left|J_{sub}(k)\right|^{2} = \sum_{j=3,4} \frac{m_{j}^{2}}{(p_{j} \cdot k)^{2}} \mathbf{T}_{j}^{2} + \frac{2p_{3} \cdot p_{4}}{p_{3} \cdot k \, p_{4} \cdot k} \mathbf{T}_{3} \cdot \mathbf{T}_{4} + \sum_{\substack{i=1,2\\j=3,4}} \left(\frac{2}{p_{i} \cdot k} \left(\frac{p_{i} \cdot p_{j}}{p_{j} \cdot k} - \frac{p_{1} \cdot p_{2}}{(p_{1} + p_{2}) \cdot k}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}\right)$$

NNLO: the soft current is more complicated. Contributions from:

► Light quark pair production:

$$\int \frac{d^{n}k_{1}}{2\pi^{n-1}} \frac{d^{n}k_{2}}{2\pi^{n-1}} \delta_{+}(k_{1}) \delta_{+}(k_{2}) \left| J_{sub}^{NNLO(q\bar{q})}(k_{1},k_{2}) \right|^{2}$$

$$e^{i\vec{b}\cdot\left(\vec{k}_{T1}+\vec{k}_{T2}\right)}$$
[S.Catani, M.Grazzini (1999)]

► Double gluon emission:

$$\int \frac{d^{n}k_{1}}{2\pi^{n-1}} \frac{d^{n}k_{2}}{2\pi^{n-1}} \delta_{+}(k_{1}) \delta_{+}(k_{2}) \left| J_{sub}^{NNLO(gg)}(k_{1},k_{2}) \right|^{2} e^{i \vec{b} \cdot \left(\vec{k}_{T1}+\vec{k}_{T2}\right)}$$

[S.Catani, M.Grazzini (1999); M. Czakon (2011)]

► One gluon emission at 1 loop:

$$\int \frac{d^n k}{2\pi^{n-1}} \delta_+(k) \left| J_{sub}^{NNLO(1L)}(k) \right|^2 e^{i \overrightarrow{b} \cdot \overrightarrow{k}_T}$$

[I. Bierenbaum, M. Czakon, A. Mitov (2011)]

$$\left|J_{sub}^{NNLO(q\bar{q})}(k_{1},k_{2})\right|^{2} = J_{\mu,sub}^{NLO}(k_{1}+k_{2})\Pi^{\mu\nu}(k_{1},k_{2})$$
$$J_{\nu,sub}^{NLO}(k_{1}+k_{2})$$
$$\Pi^{\mu\nu}(k_{1},k_{2}) = \frac{T_{R}(-g^{\mu\nu}k_{1}\cdot k_{2}+k_{1}^{\mu}k_{2}^{\nu}+k_{1}^{\nu}k_{2}^{\mu})}{(k_{1}\cdot k_{2})^{2}}$$

[S. Catani, SD, M.Grazzini, J.Mazzitelli, in preparation.]

NNLO: the soft current is more complicated. Contributions from:

$$\int \frac{d^n k}{2\pi^{n-1}} \delta_+(k) \left| J_{sub}^{NNLO(1L)}(k) \right|^2 e^{i \vec{b} \cdot \vec{k}_T}$$

[I. Bierenbaum, M. Czakon, A. Mitov (2011)]

NNLO: the soft current is more complicated. Contributions from:

► Light quark pair production: $\int \frac{d^{n}k_{1}}{2\pi^{n-1}} \frac{d^{n}k_{2}}{2\pi^{n-1}} \delta_{+}(k_{1}) \delta_{+}(k_{2}) \left| J_{sub}^{NNLO(q\bar{q})}(k_{1},k_{2}) \right|^{2}$ $e^{i\vec{b}\cdot\left(\vec{k}_{T1}+\vec{k}_{T2}\right)}$

[S.Catani, M.Grazzini (1999)]

Double gluon emission:

$$\int \frac{d^{n}k_{1}}{2\pi^{n-1}} \frac{d^{n}k_{2}}{2\pi^{n-1}} \delta_{+}(k_{1}) \delta_{+}(k_{2}) \left| J_{sub}^{NNLO(gg)}(k_{1},k_{2}) \right|^{2} e^{i\vec{b}\cdot\left(\vec{k}_{T1}+\vec{k}_{T2}\right)}$$

[S.Catani, M.Grazzini (1999); M. Czakon (2011)]

► One gluon emission at 1 loop:

$$\int \frac{d^n k}{2\pi^{n-1}} \delta_+(k) \left| J_{sub}^{NNLO(1L)}(k) \right|^2 e^{i \overrightarrow{b} \cdot \overrightarrow{k}_T}$$

[I. Bierenbaum, M. Czakon, A. Mitov (2011)]

We computed all the needed integrals:

> Analytic expression for $\mathbf{T}_i \mathbf{T}_j$, $\mathbf{T}_j \mathbf{T}_j$ contributions:

► Numerical expression for some pieces of the T_3T_4 contribution:

The completion of this calculation allowed the implementation of top pair production in the **MATRIX** framework!

INCLUSIVE CROSS SECTION

DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

We computed single and double differential distributions;
 We compared with recent measurements from CMS in the leptons+jet channels [CMS-TOP-17-002].

Renormalization and factorization scales, μ_R and μ_F , should be chosen of the order of the characteristic hard scale:

Hard scale		
Total cross section	m_t	The dynamical scale
Rapidity distribution	m_t	$-\frac{1}{2}H - \frac{1}{2}(m \perp m)$ is a good
Invariant mass distribution	$m_{t\bar{t}}$	$\mu_0 = \frac{1}{2} m_T = \frac{1}{2} (m_{T,t} + m_{T,\bar{t}})$ is a good
Transverse momentum distribution	m_T	approximation of all these scales.

The comparison with CMS is performed:

- ► Without cuts (extrapolation to parton level in the inclusive phase space);
- Multiplying our predictions by 0.438 (semileptonic BR of the *tī* pair) times 2/3 (only electron and muons).

SINGLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

- LO and NLO bands do not overlap (consistent with total cross sections),
- NLO and NNLO bands overlap, suggesting convergence of the perturbative expansion;
- Measured distribution is slightly softer than the theoretical prediction, as already observed in several analyses;
- Data and theory are consistent within uncertainties.

SINGLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

► Higher order corrections have big effect on the shape:

- $p_{T,t_{high}}$: at small p_T the p_T of the pair is forced to be small;
- $p_{T,t_{low}}$: the effect is spread over the entire p_T region.

SINGLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

- Good convergence of the perturbative expansion;
- Good agreement with the data, neglecting the first bin.
 Possible causes:
 - Threshold region: issues in experimental extrapolation?
 - Smaller top mass?

DOUBLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

- ► First bin in the $m_{t\bar{t}}$ distribution overshoots again the theoretical prediction, smaller effect due to larger bin size.
- ► Relatively uniform impact of radiative corrections in both variables.

DOUBLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

> As for single differential distributions, p_T data softer than NNLO.

DOUBLE DIFFERENTIAL DISTRIBUTIONS

[S. Catani, SD, M. Grazzini ,S.Kallweit, J. Mazzitelli (2019)]

- ► Kinematical boundary at LO: $m_{t\bar{t}} > 2m_{Tmin}$;
- Below the threshold, NLO (NNLO) is effectively LO (NLO) -> larger uncertainties;
- ► NNLO nicely describes the data except near threshold.

SUMMARY & OUTLOOK

- We have presented a new computation for top-quark production at NNLO;
- First complete application of q_T-subtraction formalism for massive colourful final state at NNLO;
- ► The process has been implemented into the MATRIX framework;
- Results for NNLO inclusive and multi-differential cross section: NNLO differential distributions in 1000-2000 CPU days.

SUMMARY & OUTLOOK

- > New public MATRIX release with the inclusion of $t\bar{t}$ production;
- Improve NNLO QCD:
 - NLO EW?
 - Inclusion of top decays?
- Extend to different processes:
 - $b\bar{b}$ production?
 - $t\overline{t}$ + colorless?

SUMMARY & OUTLOOK

- > New public MATRIX release with the inclusion of $t\bar{t}$ production;
- Improve NNLO QCD:
 - NLO EW?
 - Inclusion of top decays?
- Extend to different processes:
 - $b\bar{b}$ production?
 - $t\overline{t}$ + colorless?

BACKUP SLIDES

COMPARISON TO EXISTING RESULTS

CHM: [M. Czakon, D. Heymes, A. Mitov (2017)]

LoopFest XVIII, 14.08.19 - Simone Devoto

COMPARISON TO EXISTING RESULTS

CHM: [M. Czakon, D. Heymes, A. Mitov (2017)]

LoopFest XVIII, 14.08.19 - Simone Devoto

MORE DISTRIBUTIONS

- LO and NLO bands do not overlap (consistent with total cross sections),
- NLO and NNLO bands overlap, suggesting convergence of the perturbative expansion;
- ► Good agreement data-theory.

$$\mu_R = \mu_F = H_T/2$$

 $p_{T,t_{had}}$ distributions

 $\mu_R = \mu_F = m_{T,t_{av}}$

LoopFest XVIII, 14.08.19 - Simone Devoto

 $\mu_R = \mu_F = m_{T,t_{av}}/2$

600

800

$$\mu_R = \mu_F = H_T/2$$

 $\mu_R = \mu_F = m_{T, t_{high}}$

 $p_{T,t_{high}}$ distributions

LoopFest XVIII, 14.08.19 - Simone Devoto

 $\mu_R = \mu_F = m_{T,t_{high}}/2$

$$\mu_R = \mu_F = H_T/2$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV (35.8 \ fb^{-1})$$

$$pp \rightarrow t\bar{t} \ CMS @ 13 \ TeV$$

 $\mu_R = \mu_F = m_{T,t_{low}}$

 $p_{T,t_{low}}$ distributions

LoopFest XVIII, 14.08.19 - Simone Devoto

 $\mu_R = \mu_F = m_{T,t_{low}}/2$

$$\mu_R = \mu_F = H_T/2$$

 $m_{t\bar{t}}$ distributions

 $\mu_R = \mu_F = m_{t\bar{t}}$

LoopFest XVIII, 14.08.19 - Simone Devoto

 $\mu_R = \mu_F = H_T/4$

1000

2000

$$\begin{split} \mathcal{S}_{ij}^{m=0}(q_1, q_2) &= \frac{(1-\epsilon)}{(q_1 \cdot q_2)^2} \frac{p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \\ &- \frac{(p_i \cdot p_j)^2}{2 p_i \cdot q_1 p_j \cdot q_2 p_i \cdot q_2 p_j \cdot q_1} \left[2 - \frac{p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \right] \\ &+ \frac{p_i \cdot p_j}{2 q_1 \cdot q_2} \left[\frac{2}{p_i \cdot q_1 p_j \cdot q_2} + \frac{2}{p_j \cdot q_1 p_i \cdot q_2} - \frac{1}{p_i \cdot (q_1 + q_2) p_j \cdot (q_1 + q_2)} \right] \\ &\times \left(4 + \frac{(p_i \cdot q_1 p_j \cdot q_2 + p_i \cdot q_2 p_j \cdot q_1)^2}{p_i \cdot q_1 p_j \cdot q_2 p_i \cdot q_2 p_j \cdot q_1} \right) \right] \end{split}$$

$$\mathcal{S}_{ij}^{m\neq0}(q_1, q_2) = -\frac{1}{4 \ q_1 \cdot q_2 \ p_i \cdot q_1 \ p_i \cdot q_2} + \frac{p_i \cdot p_j \ p_j \cdot (q_1 + q_2)}{2 \ p_i \cdot q_1 \ p_j \cdot q_2 \ p_i \cdot q_2 \ p_j \cdot q_1 \ p_i \cdot (q_1 + q_2)} - \frac{1}{2 \ q_1 \cdot q_2 \ p_i \cdot (q_1 + q_2) \ p_j \cdot (q_1 + q_2)} \left(\frac{(p_j \cdot q_1)^2}{p_i \cdot q_1 \ p_j \cdot q_2} + \frac{(p_j \cdot q_2)^2}{p_i \cdot q_2 \ p_j \cdot q_1}\right)$$

DOUBLE GLUON EMISSION

$$\begin{split} \tilde{\mathcal{S}}_{ij}^{m=0}(q_1, q_2) &= -\frac{(p_i \cdot p_j)^2}{2(p_i \cdot k)(p_j \cdot k)} \left(\frac{2}{(p_i \cdot q_1)(p_j \cdot q_1)} + \frac{1}{(p_i \cdot q_1)(p_j \cdot q_2)} \right) + \frac{(p_i \cdot p_j)}{k^2} \frac{2}{(p_i \cdot q_1)(p_j \cdot q_2)} \\ &- \frac{(p_i \cdot p_j)}{2k^2(p_i \cdot k)(p_j \cdot k)} \frac{((p_i \cdot q_1)(p_j \cdot q_2) - (p_i \cdot q_2)(p_j \cdot q_1))^2}{(p_i \cdot q_1)(p_j \cdot q_2)(p_i \cdot q_2)(p_j \cdot q_1)} + (1 \leftrightarrow 2) \end{split}$$

.

$$\begin{split} \tilde{\mathcal{S}}_{ij}^{m\neq 0}(q_1, q_2) &= \frac{(p_i \cdot p_j)}{2(p_i \cdot k)^2} \left(\frac{1}{(p_i \cdot q_1)(p_j \cdot q_1)} + \frac{1}{(p_i \cdot q_1)(p_j \cdot q_2)} \right) \\ &- \frac{1}{k^2(p_i \cdot k)} \frac{1}{(p_i \cdot q_1)} \left(\frac{(p_j \cdot q_1)^2}{(p_j \cdot k)(p_j \cdot q_2)} - \frac{(p_i \cdot q_1)^2}{(p_i \cdot k)(p_i \cdot q_2)} \right) + (1 \leftrightarrow 2) \end{split}$$

$$k = q_1 + q_2$$

.

.

$$\begin{split} \left| J_{sub}^{NNLO(1I)}(k) \right|^{2} &= \langle M_{a}^{(0)}(n+1;k) | M_{a}^{(1)}(n+1;k) \rangle + c.c. \\ \langle M_{a}^{(0)}(n+1;k) | M_{a}^{(1)}(n+1;k) \rangle + c.c. = -4\pi\alpha_{S}\mu^{2\epsilon} \\ &\times \left\{ 2C_{A} \sum_{i \neq j=1}^{n} \left(e_{ij} - e_{ii} \right) R_{ij} \langle M^{(0)}(n) | T_{i} \cdot T_{j} | M^{(0)}(n) \rangle - 4\pi \sum_{i \neq j \neq k=1}^{n} e_{ik} I_{ij} \langle M^{(0)}(n) | f^{abc} T_{i}^{a} T_{j}^{b} T_{k}^{c} | M^{(0)}(n) \rangle \right. \\ \text{The expansion in } \varepsilon \text{ of } R_{ij}. \\ \text{In expansions recently published in } [I. Bierenbaum, M.Czakon, A. Mitov: arXiv:1107.4384]. \\ \text{Simplified expressions recently published in } [M. Czakon, A.Mitov: arXiv:1107.4384]. \\ \text{Simplified expressions recently published in } [M. Czakon, A.Mitov: arXiv:1107.4384]. \\ &+ \left(\sum_{i \neq j=1}^{n} e_{ij} \langle M^{(0)}(n) | T_{i} \cdot T_{j} | M^{(1)}(n) \rangle + c.c. \right) + \left(\sum_{i=1}^{n} \mathscr{C}_{i} e_{ii} \langle M^{(0)}(n) | M^{(1)}(n) \rangle + c.c. \right) \right\} \\ \text{NLO-like contributions} \\ e_{ij} = \frac{\left(p_{i} \cdot p_{j} \right)}{\left(p_{i} \cdot k \right) \left(p_{j} \cdot k \right)} \qquad e_{ii} = \frac{m_{i}^{2}}{\left(p_{i} \cdot k \right)^{2}} \end{split}$$

.