

Introduction to the Fermilab Scientific Program

James Amundson, Scientific Computing Division Head Inaugural Meeting of the International Computing Advisory Committee March 14, 2019

Fermilab

- America's laboratory for particle physics and accelerators
- About 1,800 staff at \$550M/yr
- 6,800 acres for federal land including restored prairie
- 4,000 scientists from across the U.S. and 53 countries use Fermilab's facilities

Fermilab Program Driven by the P5 Report

- Particle Physics Project Prioritization Panel (P5)
 - A strategic plan for U.S. particle physics maximizing
 - opportunities for breakthrough science
 - Explicit prioritization, hard choices made within realistic budget scenarios
- Plan:
 - Continue U.S. commitment and leading roles in the LHC
 - Build a neutrino program at Fermilab that will attract the world community
 - Continue U.S. leading efforts in dark matter, dark energy and cosmic microwave background
 - Pursue the Fermilab-based muon program
 - Invest in the accelerator and detector technologies that we will need in the future

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

Report of the Particle Physics Project Prioritization Panel (P5)

May 2014

Current Fermilab Accelerators

Booster v beam

MicroBooNE, SBN program

Booster proton energy: 8 GeV

NUMI v beam

Main Injector proton energy: 120 GeV

π-day 2019 Intro to the Fermilab Scientific Program I Amundson

Proton Improvement Plan-II (PIP-II)

5 π-day 2019 Intro to the Fermilab Scientific Program I Amundson

Experiments Utilizing the Fermilab Accelerator Complex

Fermilab Program Planning 5-April-18

LONG-RANGE PLAN

Neutrino Experiments

- Current/recent
 - MINERvA
 - MicroBooNE
 - NOvA
- New/Upcoming
 - ICARUS
 - SBND

Fermilab's Future Flagship

Muon Experiments

- Measure muon's magnetic moment to 140 parts per billion accuracy
- Last experiment at Brookhaven indicated >3σ discrepancy
- Fermilab goal is $>5\sigma$ discrepancy
- Data set larger than BNL already on tape

- Endeavoring to discover a rare muon interaction implying new physics
- Will achieve unprecedented sensitivity (7x10⁻¹⁷)
 a factor of 10,000 better than world's best
- Full construction underway

Fermilab is the U.S. CMS National Lab

- CMS T1 Facility
- LHC Physics Center
- Remote Operations Center

We have been working on CMS for a long time

Supporting Fermilab Experiments: CPU

- Note: CMS not included
 - CMS computing is separately funded

Supporting Fermilab Experiments: Analysis / Persistent Disk

- Note: CMS not included
- This is disk space that is permanently resident but with no backup
 - Allocated via SCPMT / SPPM process
 - Management under experiment control
 - 2.3 PB split across 32 experiment/project users

Experiment	2019 Request	2020 Request	2021 Request
DES	400	500	500
DUNE	400	400	800
ICARUS	100	150	200
MicroBoone	300	300	300
Mu2e	150	200	300
g-2	150	300	300
Nova	450	450	450
SBND	100	125	150
Minerva	250	250	250
Others	450	450	450
TOTAL	2,750	3,125	3,700

Supporting Fermilab Experiments: Dedicated Disk

- Note: CMS not included
- This is "tape backed" disk space that is dedicated to a specific experiment
 - Allocated via SCPMT / SPPM process
 - Typically for raw data ingest or pre-staging
 - 2.1 PB split across 13 functions

Experiment	2019 Request	2020 Request	2021 Request
DUNE	1,100	1,100	1,500
MicroBoone	?	?	?
Mu2e	0	0	60
Nova	132	132	132
SBND	2	2	2
Minerva	126	126	125
Others	132	132	132
TOTAL	1,234	1,234	1,694

Supporting Fermilab Experiments: CPU

Note: CMS not included

For reference, the net tape usage to date:

Experiment	Net to date (PB)
NOVA	25.92
MICROBOONE	18.03
G-2	6.15
LQCD	5.67
DUNE	5.44
MINERVA	3.11
SIMONS	2.90
DES	2.87
MU2E	1.27
DARKSIDE	1.25
MINOS	0.63
SEAQUEST	0.21
Other	0.81
TOTAL Public	74.25

Fermilab

Scientific Computing Program at Fermilab

- Support of the accelerator-based particle physics experiments is the primary mission of the Scientific Computing Division
- ... but it is not the entire mission
- Other topics include
 - Particle Theory
 - Lattice QCD
 - Accelerator Physics
 - Computational accelerator physics
 - Especially collective effects and HPC
 - Cosmology
 - Computing support for cosmological experiments
 - DES (ending), LSST (beginning)
 - Artificial Intelligence
 - Mostly machine learning applications
 - Quantum Computing
 - Now in its own organization, but with continuing SCD contributions

Conclusions

- The Fermilab Scientific Program has many components
 - Fermilab accelerator-based physics
 - Neutrinos
 - Muons
 - CERN accelerator-based physics
 - CMS
 - Cosmological experiments
- The Fermilab accelerator complex is expanding
- DUNE will be our flagship experiment
- Program includes many smaller computational physics topics
- The Scientific Computing Division supports them all

