
1

A semi-analytic way of
Simulating light

Diego Garcia Gamez,
Patrick Green,

and Andrzej Szelc

Introduction

● Why we need a semi-analytic light simulation
model (and why we need it now).

● How it works and performs.
– Timing

– Number of hits

● Changes to the code.
● Future development.
● Other things we're trying to slip under the radar.

Optical Libraries

● Up to now we've been mostly using optical libraries to simulate in LArSoft. This has worked reasonably
well, but it's not an ideal solution:

– libraries required are very large: loading library causes severe memory issues + large file size
causes issues for grid jobs. Current libraries for SBND and DUNE
are >1GB requiring the use of Stash cache.

– This is with limiting the size of voxels to several cm a side (some dimensions even more).

– Does not provide timing information (this is solved in LArSoft).

– Need to run a campaign of grid jobs every time a detector parameter changes.

– In case of DUNE 1x2x6 segmenting the bars into subdetectors makes it impossible to generate the
library due to memory issues. Needed for the TDR.

● DUNE needs a realistic X-Arapuca supercell geometry for physics studies very quickly, SBND
libraries are also becoming cumbersome.

● We have developed an alternative method for simulation of light collection to make things work.

● This consists of:

– Improved parametrization of photon arrival times for both VUV and Visible light

– A semi-analytic model for predicting the number of hits based on position in the detector for
direct VUV light and reflected light coming off the cathode.

Scintillation Light in Argon (2)

Liquid argon is mostly
transparent to its own
scintillation.

At longer distances:
● Rayleigh scattering ~55cm

f(l)
● absorption, e.g. on nitrogen

~30 m @2ppm N2
begin to play a role.

Note high refractive index
~1.5 and gradient of for VUV
→ relatively slow light.

 [nm]
100 200 300 400 500 600 700

gr
ou

p
ve

lo
cit

y
[c

m
/n

s]

5

10

15

20

25

Entries 3745460
Mean 10.13
RMS 1.58

 [cm/ns]groupv
0 5 10 15 20 250

20

40

60

80

100

310

Entries 3745460
Mean 10.13
RMS 1.58 Entries 6630710

Mean 24
RMS 0.08293

Entries 6630710
Mean 24
RMS 0.08293

Visible
VUV

VUV
Visible

● A previous version, using polynomials to predict the
arrival timing distribution already exists in LArSoft.
Good to about 300-350 cm.

● Landau + Exponential parameterisation of transport
time distribution for the VUV (direct) component of
light:

– Landau + Exponential for distances < 300 cm

– Landau for distances > 300 cm

● Parameterised in terms of the distance between
scintillation point and optical detector.

● Predicts earliest arrival time and arrival time
distribution accurately.

● Scales to size of DUNE and realistic X-Arapuca
geometry without issues, no requirement for
parameters saved in extended library.

VUV arrival times

Visible arrival times

More challenging as light has to get to the cathode (as VUV)
and then get to detectors (as visible). Many different paths
possible.

1. Earliest arrival time:

– fastest path light can take is calculated geometrically

– VUV part of path given by Landau + Exponential

– Visible part of path given by distance/velocity

2. Distribution approximated by smearing times along fastest
path:

– exponential smearing constructed such that earliest time
unchanged but later times increasingly smeared

– cut-off applied to avoid long tail from exponential

– parameterised in terms of distance to cathode plane and
angle along the fastest path

• Earliest arrival time predicted to +/- 0.5 ns and arrival time
distribution well approximated by smearing.

distance = 113
cm

Full Simulation
Parameterisatio
n

Full Simulation
Parameterisatio
n

distance = 288
cm

Semi-analytic modelling of light

● Utilises the solid angle subtended by the optical
detectors to predict the number of incident photons.

● Semi-analytic because corrections are required for
effects that cannot be predicted via the solid angle:

– Rayleigh scattering

– Reflections from border walls / field cage

● Provides alternative to optical library for fiducial
volume:

– avoids large memory requirement of libraries

– no issues from segmentation of bars into X-Arapuca
supercells or even individual windows

– can scale to full size of DUNE without issues (not
just 1x2x6 region)

VUV (direct) light

● Semi-analytic model for the VUV (direct)
component of the light:

– solid angle of arapucas used to predict
incident photons

– Gaisser-Hillas corrections applied to
account for Rayleigh scattering

● Effect of reflections from border walls
small:

– VUV photons predominantly absorbed

– propagation of VUV photons heavily
suppressed by scattering

● Detailed study of border effects is on-going.

Scintillation

Optical
detector

VUV (direct) light

● Results in idealised case without border effects very good: no bias and ~ 10 %
resolution.

● Performs better than optical libraries: 15% underestimation and 23% resolution.

Semi-analytic model for visible light from TPB
coated foils on the cathode:

– number of VUV photons incident on cathode
calculated using solid angle Ω1

– corrected for Rayleigh scattering using
Gaisser-Hillas curves (direct VUV light)

– hotspot region assumed to dominate hits

– number of visible photons incident on optical
detector calculated from solid angle Ω2

– corrections applied to account for distribution
of hits across reflective foils and for border
effects

Visible (reflected) light

Ω
2

Hotspot

Cathode centre
Cathode

VUV path

Visible path

Scintillation point

PMT,
Arapuca,
Bar

d
Ω

1

θ

● Corrections for DUNE geometry with Arapuca window sized optical
detectors.

Visible (reflected) light

No border
effects

Reflective walls + field cage
included

● Performance of visible (reflected)
light semi-analytic model in DUNE
very good:

– No bias unlike optical libraries

– Resolution ~ 15% across all
angles and distances

– Resolution ~ 5% for angles < 50
degrees

● Similar accuracy to VUV (direct) light
semi-analytic model.

● Better performance than optical
library (15% underestimation and
23% resolution).

DUNE 1x2x6: centre

DUNE 1x2x6: middle 1/3

● In DUNE 1x2x6 middle 1/3 region:

– always far from border walls in z-
direction; no decrease in accuracy in
number of hits compared with centre

– but reflections from top and bottom
(y-direction) have significant effect

● Semi-analytic model performs as well
as optical library for range -500 < y <
500 cm:

– resolution better than 20% across all
angles and distances + no bias

– covers ~80% of middle third volume

– worse for y < -500 and y > 500 cm,
further study of corrections for this
region on-going

DUNE 1x2x6: middle 1/3

● Total hits summed across all
optical channels from an energy
deposition:

– discrepancy within ~ +/- 10%
in range – 500 < y < 500 cm,
covering ~ 80% of middle
third region

– worse for y > 500 cm without
further corrections being
included, study of these
effects on-going

● Performance similar for both
individual arapuca window sized
apertures and X-Arapuca
supercell sized apertures.

Implementation
● The main changes to the code are in larsim and larana, feature/lightprop_ugr_mcr

● List of files modified in larsim:

● larsim/LarG4/OpDetPhotonTable.cxx : added “fReflectedDetectedPhotons.clear();”

● larsim/LarG4/OpFastScintillation.hh:

– added functions vuv & vis timings, vuv and vis hits + required parameters

– added functions for interpolations, solid angle calculations, gaisser-hillas functions

● larsim/LarG4/OpFastScintillation.cxx: [bulk of added code]

– edited constructor to read in paramters for timings and hits when flags set

– added if statements to use timings / nhits model when flags set instead of library

– implementation of all above functions

● larsim/PhotonPropagation/PhotonVisibilityService.h:

– added required variables to store parameters loaded from fcl file

– added functions to load to enable parameters to be loaded by reference to OpFastScintillation by constructor

● larsim/PhotonPropagation/PhotonVisibilityService_service.cc:

– loads parameters from fcl file

– faster calculation of timing.

● larsim/PhotonPropagation/opticalsimparameterisations.fcl:

– contains all parameterisations

● larsim/PhotonPropagation/photpropservices.fcl:

– now includes opticalsimparamterisations.fcl

– new visibility services for using timings and nhits models

Optimising VUV calculation

● larsim/PhotonPropagation/PhotonVisibilityService_service.cc

● Previously the Landau + Exponential parameterisation was
very slow, this now been fully resolved:

– Original: parameterisations generated and sampled for
exact distances, could not be saved between uses.

– To allow random numbers to be drawn from distribution
TF1::GetRandom() builds integral array – this is very
slow.

– Updated: discretisated in distance allowing the
parameterisations to be generated once then stored.

● Huge efficiency improvement: ~ 100 times faster with 1cm
steps (10000 20 MeV energy depositions randomly
distributed)

● Discrepancy introduced by discretisation negligible: ~ 0.1
ns with 1cm steps

Design goals

● Default is for this to be turned off, this should minimize trouble for
other experiments. If someone does want to use it, we will be happy
to help out.

● We pre-define parameter sets in fHiCL which allow to choose in the
parameter space:

– Use/don't use analytic method

– Use/don't use timing parametrization.

– Use/don't use reflected light.

● The parameter sets are stored as lookup tables (1d or 2d arrays in
FHiCl).

OpFastScintillation.hh

The new
functions
included

OpFastScintillation.cxx

Parameter
loading

OpFastScintillation.cxx

Calculating the
number of
photons

OpFastScintillation.cxx

Calculating the arrival times

PhotonVisibilityService.h

Loading parameter sets from the
service (originally declared in fcl)

PhotonVisibilityService.h

Timings

PhotonVisibilityService.h

Nhits

larsim/PhotonPropagation/opticalsimparameterisations.fcl

New file with all the parameter definitions

VUV time

Visible time

25

larsim/PhotonPropagation/opticalsimparameterisations.fcl

N
h

it
s
D

U
N

E
-S

P

N
h

it
s
S
B

N

26

New file with all the parameter definitions

larsim/PhotonPropagation/opticalsimparameterisations.fcl

N
h

it
s
D

U
N

E
-D

P

ONLY DUNE-SP available set available for the visible light number of hits model
at this time

27

New file with all the parameter definitions

28

larsim/PhotonPropagation/photpropmodules.fcl

• Enable optical library + time correction for the
VUV/direct component

29

larsim/PhotonPropagation/photpropmodules.fcl

• Enable optical library + time correction for the
VUV/direct & VIS/reflected components

30

larsim/PhotonPropagation/photpropmodules.fcl

The idea is to get
this information
directly from the
gdml file in future
iterations

• Enable Nhits model + time correction for the
VUV/direct component

31

larsim/PhotonPropagation/photpropmodules.fcl

• Enable Nhits model + time correction for the
VUV/direct & VIS/reflected components

Other things we're fixing:
SimPhotonCounter

● larana/OpDet/SimPhotonCounter_module.cxx:
● Fix to read in Reflected light collections.

SimPhotonCounter cont'd

Remove duplicate code
and add selection on

Collection label rather than
On wavelength

(new LArG4 logic)

SimPhotonCounter Cont'd

Full sim used to generate library
does not fill the “Reflected”

collection. Need to catch for that
to maintain library building

working.

This could have only
Affected someone

running Full sim jobs
 with particles – library

 building defines
its own energy

Future Improvements

● The way LArG4 modules saves the collections.
– Full sim library jobs do not differentiate between visible and reflected. This

makes sense, but perhaps shouldn't save the second collection then?

● The way SimPhotonCounter does too many things at once.
– Might be worth splitting into two modules: tree building and library building.

● The way we get the detector sizes (should be from gdml)
– Have code from Alex, need to implement (short term).

● Include border effects.
– Could be just via .fcl parametrization.

● Split off into its own Physics Module

Testing

● DUNE CI tests ran to completion.
● ArgoNeuT and LAriAT as well.
● ICARUS and MicroBooNE have some

problems (will check up with the relevant
people)

● SBND has previous version tagged. Will
recheck shortly.

Conclusions

● We have a semi-analytical model of
predicting the light detected at a given
PMT/light detector.

● DUNE urgently needs this for the next MC
production.

● The code should be transparent to anyone
who doesn't need it.

Backup

SBND new optical library

• Full LAr volume sampled:
1st time in SBND

• 104 x 109 x 141 =
1598376 voxels

• 104 voxels/job  15369
grid jobs

40

 5x5x5cm3 voxel size
 cover all cryostat (active + non instrumented

argon)
 500000 photons/voxel

41

SBND:
 500000 photons/voxel
 5x5x5 cm3 voxel size
 cover all cryostat (active + non instrumented

argon)
  SBND file size 2.2 G

 Optical library issues (size)

248 OpChannels x 1598376
voxels = ~ 400 M entries in
TTree

• 1st step already done (two week ago)

• Fermilab computer support started the other
tickets that need to be done with dCache and
networking 42

Files in cvmfs must be less than 1 GB enable
StashCache (persistent dCache areas) for SBND
(already used by DUNE and to store flux files).

More details about StashCache are available at
this link:
https://cdcvs.fnal.gov/redmine/projects/fife/wiki/Introduction_to_FIFE_and_Compone
nt_Services#OASISCVMFS-process-for-handling-partially-reused-data-files-StashCache

 Optical library issues (location)

file:///home/andrzej/Documents/Talks_and_Seminars/Light_Simulation_LArSoftMeet/
file:///home/andrzej/Documents/Talks_and_Seminars/Light_Simulation_LArSoftMeet/

43

SBND file size 2.2 G  jobs loading the library will
use about 4.5 GB of memory

 Optical library issues (Memory)

• Loading both components: Direct and Reflected
light

• Loading only the Direct light component (1/2 of
memory used, as expected)

Can/should we make our library smaller?

Done by Gianluca

ROOT::ECompressionAlgorithm::kZLIB
vs

 ROOT::ECompressionAlgorithm::kLZMA

But new tree reads in 250 seconds, while the
original one takes 160 seconds 44

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

