

Monte Carlo Studies Exclusive Cross Sections

Jake Calcutt

March 14, 2019

- Ajib and Heng-Ye presented MC studies last week at the Wednesday meeting
 - Looked into total inelastic/elastic cross sections for pions and protons
 - Compared LArG4 thin-slice to Geant4 toy scattering experiment (G4HadStudies from Hans Wenzel)
- I've extended a similar study to exclusive pion interactions
 - Also developed my own code to extract Geant4 cross sections
 - Total inelastic/elastic and exclusive

- Geant4 simulates particles by "tracking" them through material
 - The particle takes a series of steps
 - Multiple processes "active" each step
 - Active: has a chance to occur
 - Different types of processes
 - "AlongStep" Transportation, ionization
 - "AtRest" Decay at rest, capture
 - "PostStep" Elastic, Inelastic hadronic interactions

- Each process has a chance of occurring during a step
 - Hadronic (in)elastic interactions: based on the **cross section**
- After a process is chosen to occur, its interaction model is invoked
- You can mix and match cross sections and models
 - Using pre-defined physics lists or creating your own
- 2 separate concepts
 - When will a process occur? \rightarrow Cross Section
 - What happens when a process occurs? \rightarrow Model

- Wrote my own code to extract the cross sections from Geant4
 - Gets the inelastic, elastic, and total (their sum)
 - Material is configurable (for this study Ar)
 - Works for protons, charged pions

- The usual model in Geant4 for inelastic hadronic interactions is the **Bertini Cascade**
 - The hadron enters the nucleus, steps through the nuclear medium, and possibly interacts with nucleons
 - The targeted nucleons step through the nucleus similary
 - Creates a "cascade" of particles/interactions in the nucleus

- When all cascading particles leave the nucleus or are absorbed by the medium, the cascade ends
 - The results/observables are the outgoing particles

- "Exclusive cross sections" do not actually exist in Geant4
 - But we can categorize the results of the cascade and multiply the fractions to the extracted inelastic cross section
 - Wrote code to run only the cascade

- "Exclusive cross sections" do not actually exist in Geant4
 - But we can categorize the results of the cascade and multiply the fractions to the extracted inelastic cross section
 - Wrote code to run only the cascade

- Expanded on Heng-Ye's code for Thin-Slice cross section
 - Separated out by final states
 - Code available in branch feature/calcuttj_pion_analysis_abscex
 - @ dunetpc/dune/Protodune/Analysis/PionCrossSectionAnalyzer_module.cc

- Analyzed 50000 ~1GeV Pions generated by Ajib
 - Compared to the extracted exclusive cross sections

Channel	Definition
Absorption	No pions
Charge Exchange	1 π ⁰
Inelastic	1 same-charge π
Double Charge Exch.	1 opposite-charge π
Production	>1 pions

MICHIGAN STATE

3/14/2019

DUNE

- Expanded MC cross section studies to exclusive final states
- Have code to extract exclusive cross sections of user-defined final states
- Sanity check: matches thin slice method for exclusive channels