UPDATE ON ITO ANALYSIS USING PANDORA RECONSTRUCTION

MILO VERMEULEN — 14-3-2019

BACKGROUND

- Good shower reconstruction necessary for π⁰
 reconstruction
- Pandora currently the standard
- This presentation: π⁰ shower accuracy in 10kt and ProtoDUNE models from analyst's perspective
- Preliminary π⁰ reconstruction

VERY FIRST LOOK

- Simply compare
 MC photon and
 reco shower
 - Record distance,
 relative angle

 $1 \text{ GeV } \Pi^0$ in DUNE

Π⁰ ANALYSIS USING PANDORA — MILO VERMEULEN

ZOOM AND ENHANCE!

DUNE mcc11 – 10000 events

CHALLENGE 1: SHOWER MATCHING

- Could investigate more sophisticated matching including relative angle, energy
- Alternatively, link showers to photons via backtracker

CHALLENGE 2: NEAREST POINT FINDING

- Find shortest distance between back-tracked matched showers to judge quality of reconstruction
 - Smaller closest distance points to a better π⁰ determination
- This is something that can be done without MC information

CHALLENGE 2: NEAREST POINT FINDING — CLOSEST DISTANCE

10000 10kt events

CHALLENGE 2: NEAREST POINT FINDING — MC/RECO COMPARISON

10000 10kt events

CHALLENGE 2: NEAREST POINT FINDING — MC/RECO COMPARISON

10000 10kt events

CHALLENGE 2: NEAREST POINT FINDING — MC/RECO COMPARISON

10000 10kt events

10000 10kt events

INVARIANT MASS FROM SHOWERS

10000 10kt events

DATA-DRIVEN ANALYSIS

- Use purely reconstruction information to find π⁰s
- 1. Shortest distance between shower lines
- 2. Reconstructed invariant mass

DATA-DRIVEN ANALYSIS — SHORTEST DISTANCE BETWEEN SHOWER LINES

Same data set as before, now look at all shower pairs

10000 10kt events

DATA-DRIVEN ANALYSIS — INVARIANT MASS

10000 10kt events – max 2 cm between shower lines

DATA-DRIVEN ANALYSIS — DISTANCE TO NEAREST MC П⁰

10000 10kt events – max 1 cm between shower lines and inv. mass < 0.2 GeV

DATA-DRIVEN ANALYSIS — DISTANCE TO NEAREST MC П⁰

10000 10kt events – max 1 cm between shower lines and inv. mass < 0.2 GeV

DATA-DRIVEN ANALYSIS — DISTANCE TO NEAREST MC П⁰

10000 10kt events – max 1 cm between shower lines and inv. mass < 0.2 GeV

FUTURE PLANS

Investigate bad shower matching in ProtoDUNE

Continue to develop shower matching algorithm

Distinguish photon showers from electron shower

Refine cuts to have least false positives/negatives