MicroBooNE

Lu Ren On behalf of the MicroBooNE Collaboration June 13, 2019

Main Physics Goals

- Investigation of Low Energy Excess (LEE) seen by MiniBooNE
- Neutrino-Ar cross section
 measurements
- Beyond Standard Model (BSM) searches
- Detector R&D

Phys.Rev.Lett. 121 (2018) no.22, 221801

MicroBooNE

- 85 ton active mass, surface-based LArTPC
- 8192 wires, 32 PMTs
- UV laser calibration system
- Start taking data in Fall 2015
- Cosmic ray tagger installed in 2016-2017

Neutrino Beams

Neutrino Beams

- MicroBooNE is 470 m from the target
- BNB ν_{μ} flux peaks at 0.8 GeV
- We have collected 1.3×10²¹ Protons On Target (POT) since October 2015
 - $\circ \sim 200,000$ neutrino events

Neutrino Beams

Lu Ren

NM

- MicroBooNE also receives off-axis NuMI beam
- About 680 m from the target
- We have collected 2×10²¹ POT since October 2015
- Larger fraction of v_e than BNB

icroBooNE

We would like to thank Fermilab for the excellent support of neutrino beams, detector operation and computing infrastructure !

Automated Reconstruction

3 independent reconstruction methods

Pandora

Lu Ren

Pattern recognition in 2D to build 3D reconstruction

Deep Learning

Use Convolutional Neural Network (CNN) to label tracks and showers from input pixel images

WireCell

Directly reconstruct 3D space points and perform clustering in 3D

JINST 12, P03011 (2017)

PRD 99, 092001 (2019)

JINST 13 (2018) no.05, P05032 MICROBOONE-NOTE-1040-PUB

EPJC 78, 1, 82 (2018)

Neutrino Cross Section Measurements

- BNB (ν_{μ})
 - Charged-current (CC) Inclusive arXiv:1905.09694, submitted to PRL
 - CC Quasi-Elastic (QE) arXiv:1812.05679, submitted to EPJC
 - CC N-Proton <u>MICROBOONE-NOTE-1056-PUB</u>
 - CC 2-Proton <u>MICROBOONE-NOTE-1056-PUB</u>
 - CC π^0 PRD 99, 091102(R) (2019)
 - CC π^+
 - CC Coherent Pion Production
 - CC Kaon Production
 - NC π^0
 - NC Elastic <u>MICROBOONE-NOTE-1053-PUB</u>
 - Track Multiplicity EPJC 79, 248 (2019)
 - o ...

- NuMI
 - ν_e CC Inclusive <u>MICROBOONE-NOTE-1054-PUB</u>
 - $v_e \text{ CC } 0\text{-Pion}$
 - Kaon Decay-At-Rest (KDAR)

MM Lu Ren

Charged-Current Neutral Pion Production

- First absolute cross section measurement from MicroBooNE
- First π^0 cross section on argon to use fully automated shower reconstruction
- Challenging background of v_e appearance
- Selected events reproduce expected π^0 invariant mass

$$\nu_{\mu} + Ar \rightarrow \mu^{-} + \pi^{0} + X$$

Charged-Current Neutral Pion Production

• Verified that the scaling used in models for larger nuclei is consistent with our data

v_{μ} CC Inclusive Cross Section

- Full momentum coverage
 - Using Multiple
 Coulomb Scattering
 (MCS) for momentum reconstruction
- Full angular coverage
- Cross section measured
 as a function of muon
 momentum and muon
 angle with respect to the
 beam direction

- First v_{μ} -Ar double differential cross section measurement
- Compared with 4 different model sets
- Favors GENIE 3 G1810a0211a
- Uncertainty is dominated by:
 - Detector model (16.2%)
 - Beam flux (12.2%)
 - Out-of-FV neutrino modeling (10.9%)

- First ν_{μ} -Ar double differential cross section measurement
- Compared with 4 different model sets
- Favors GENIE 3 G1810a0211a
- Uncertainty is dominated by:
 - Detector model (16.2%)
 - Beam flux (12.2%)
 - Out-of-FV neutrino modeling (10.9%)

CC N-Proton Analysis

- Use CC Inclusive as pre-selection
- Final state has 1 muon and no pions
- Important for understanding Final State Interaction (FSI) and nucleon correlations
- Paper in preparation

Other On-going Cross Section Measurements

Please find all our latest results at <u>https://microboone.fn</u> <u>al.gov/public-notes/</u>

• Independent e-like and γ -like searches targeting two different models for the MiniBooNE excess

- e-like: 1e+X, 1e+1p, 1e+Np
- γ -like: 1γ +0p, 1γ +1p

- Blind search only a small fraction of first year data is open for developing analyses
- Simultaneous $v_e v_{\mu}$ fit to constrain flux and cross section uncertainties
- Background constraints from data using sidebands

• We have completed first iteration of v_e and single photon selections

- We have completed first iteration of v_e and single photon selections
- We have been working on integrating analysis and simulation improvements in the last 12 months
 - $\circ \quad \text{GENIE 2} \rightarrow \text{GENIE 3}$
 - "2D Deconvolution"
 - Integrated calibrations into detector simulation
 - Integrating cosmic ray tagger into analyses

Summary

- MicroBooNE has been running smoothly since October 2015
- We have collected 1.3×10^{21} POT BNB data
- We have published our first neutrino cross sections
- Pioneering work on calibrations, simulations, neutrino event reconstruction and analysis which is paving the way for neutrino measurements in liquid argon
- Stay tuned for more exciting results from MicroBooNE!

Backup

Lu Ren

NM State

Systematic Sample	Relative Uncertainty [%]
Induced Charge Effect	13.0
Light Yield Model	4.7
Channel Saturation	4.3
Space Charge Effect	3.7
TPC Visibility	3.7
Electron Lifetime	2.9
Misconfigured Channels	1.8
Longitudinal Diffusion	1.7
Transverse Diffusion	1.6
PE Noise	0.4
Wire Response	0.2
Wire Noise	0.1
Electron Recombination	0.1

Charged-Current Neutral Pion Production

