

AWA Needs and Opportunities Workshop

chaired by Manoel Conde (Argonne), John Power (Argonne National Lab)

from Wednesday, August 21, 2019 at 13:00 to Friday, August 23, 2019 at 12:00 (US/Central) at Argonne, Building 360 (A-224)

Structure-Based Beam-Driven Accelerator

Y. Jiang¹, X.Chang¹, S.V. Shchelkunov^{1,2} and J.L. Hirshfield^{1,2}

¹ Beam Physics Group, Yale University, New Haven, CT 06511 (USA) ² Omega-P R&D, Inc. New Haven, CT 06511 (USA)

Research sponsored by NSF Award#1632588

(AWA) to provide

- 1) number of bunches = 300 or about;
- 2) charge per bunch = 80 nC;
- 3) bunch size, transverse < Ø 4mm;
- 4) bunch size, longitudinal < 2 3 mm;
- 5) bunch energy spread, Pk-Pk < 10%;
- 6) frequency = 1.3 GHz for bunch spacing;
- 7) bunch energy = 3 10 MeV;
- 8) total beam power, peak ~ 0.3 1 GW;
- 9) beam power, average ~ 80 240 W @ 1Hz;
- 10) conservative number of klystrons at 100 MW = 4 12;

(Omega-P R&D) note: the frequency of our structure = 10.4 or 11.7 GHz (+ third harmonic, by design);

$$E_{total} = (1 - \alpha)E_1 + \alpha E_2$$
$$H_{total} = (1 - \alpha)H_1 + \alpha H_2$$

E₁, **E**₂ normalized to the same acceleration gradient

 α is the percentage of the 2nd mode

$$\Delta T \propto (1-\alpha)^2 < H_1^2 > +\alpha^2 \sqrt{f_2/f_1} < H_2^2 > = < H_1^2 > [(1-\alpha)^2 + \alpha^2 \eta^2]$$

where
$$\eta = \sqrt{(f_2/f_1)^{1/2}} < H_2^2 > / < H_1^2 >$$

 $\exists \alpha \qquad (1-\alpha)^2 + \alpha^2 \eta^2 < 1$

also, modified Poynting vector S_c and total RF power P_{total} are reduced.

Two harmonic mode superposition could suppress pulsed heating – a possible precursor to breakdown.

TM₀₁₀+TM₀₁₂ Cavity

a/λ=0.10						
π mode	TM ₀₁₀	TM ₀₁₂ Bimodal (Cavity	Pillbox A	Pillbox B	Nose-cone
offective gradient	1 st harmonic	3 rd harmonic	84% 1st	1 st harmonic	1 st harmonic	1 st harmonic
enective gradient			1.1.0% ard			
E_{acc} =100 MV/m	alone	alone	+10% 5.*	oniy	oniy	only
frequency (GHz)	11.9942	35.9826		11.9942	11.9942	11.9942
effective shunt	100 72	24.05	•	100.42	00.10	1077
impedance (MΩ/m)	100.73	24.65	124.19	100.43	99.18	127.7
transit time factor	0.753	0.633		0.762	0.758	0.749
max E _{surf} (MV/m)	209.8	359.2	V 178.0	206.7	178.0	218.6
max H _{surf} (MA/m)	0.309	0.776	0.339	0.309	0.309	0.267
max S _c (W/μm²)	2.365	9.700	▼ 1.670	3.190	3.181	3.68
max ΔT (K) @ 200ns pulse length	24.46	261.8	▼ 19.15	24.46	24.46	17.65
wall loss (MW)	1.241	5.069	▼ 1.006	1.244	1.260	0.979

2-mode superposition compared to		\mathbf{D} is a dal (4.00)	Ness sous	
		Bimodai (16%)	Nose-cone	
fundamental mode alone in the same	effective gradient E_q	150	150	MV/m
cavity :	effective shunt impedance	124.2	127.7	MΩ/m
	max E _{surf}	267	327.9	MV/m
• pulsed heating temperature $\sqrt{22\%}$	max H _{surf}	0.509	0.401	MA/m
♦ effect shunt impedance ↑23%	max S _c	3.76	8.28	W/µm²
\Diamond peak surface E-field $\sqrt{19.4\%}$	max ΔT @	/12 1	20 7	К
	200ns pulse length	43.1	33.7	
\circ modified Poynting vector $\sqrt{30\%}$	wall loss	2.26	2.20	MW
♦ total RF power ↓ 19%				·

Bimodal Cavity for Pulsed Heating Suppression

2-mode superposition compared to fundamental mode alone in the same MHC :

◊ pulsed heating temperature ↓22
◊ peak surface E-field ↓19.4%
◊ total RF power ↓ 19%

♦ effect shunt impedance ↑23%
♦ modified Poynting vector ↓30%

Electron Gun 350-500kV; 129-220 A

Solid State Marx Modulator 500kV, 250 A, 1.2 μs, 5 Hz

Challenge: High Current Drive Beam Solution: Thermionic Beam using Klystron-like Bunching without actual X-band Klystron

Challenge: Low Energy Drive Beam (0.5 MeV) can be reflected by high field (1.8 MeV loss) Solution: addatwo-frequency output cavity and couplet otest cavity

diameter) test beam is sent through the test cavity to test the

acceleration.

Left: Fundamental mode field pattern. Right: 3rd HOM field pattern.

Electric field vs. time at probe location of figure 11. The peak field reaches 313 MV/m. The peak energy gain of the test beam is 1.92 MeV.

to test these directly... we need something else;

lesser drive same gradients same wall fields

almost no test bunch – low beam loading (low efficiency), but we can...

...demonstrate that BDR is reduced (as the 1st step);

+ we can use a small test charge to map the fields on axis to show that they are a real combo of the 1st and 3rd harmonics

