AWA NEEDS AND OPPORTUNITIES WORKSHOP

SINGLE SHOT HIGH TRANSFORMER RATIO MEASUREMENTS IN THE NONLINEAR PLASMA REGIME

RYAN ROUSSEL

University of California: Los Angeles

OUTLINE

- Motivation
- Experiment Overview
 - Emittance Exchange
 - Plasma Beamline Design
 - Hollow Cathode Arc Plasma Source
- Wakefield Measurements
 - Single shot wakefield measurement
 - Observation of high TR
 - Observation of wakefield flattening
 - Probing nonlinearities in the plasma response
- Conclusion

MOTIVATION

Maximum energy delivered to main beam is limited by the **drive energy** and the **transformer ratio (TR)**

TR < 2 for symmetrical beams in a linear wakefield

Transformer ratio can be increased using

- Asymmetric beams
- Nonlinearities in the wakefield response

THE ARGONNE WAKEFIELD ACCELERATOR

HIGH TR DIELECTRIC MEASUREMENTS AT AWA

ye. 100. 20tt. 120.11 (2010). 11100

EXPERIMENT GOALS AT AWA

Apply **Emittance Exchange** shaping techniques...

- High charge (> 2 nC)
- Near arbitrary current profiles
- Long witness for wake sampling in a single shot

... to study high TR plasma wakefield acceleration

- Tunable wakefield wavelength
- Nonlinear transverse blowout effects
- Large wakefield amplitude

M. Litos , Nature 515, 2014

HIGH TR PWFA MEASUREMENTS AT PITZ

G. Loisch, Phys. Rev. Lett. 121, 064801

AWA EXPERIMENT DESIGN

EXPERIMENT OVERVIEW

CURRENT SHAPING WITH EMITTANCE EXCHANGE

G. Ha et. al., Phys. Rev. Lett. 118, 104801

CURRENT SHAPING WITH EMITTANCE EXCHANGE

G. Ha et. al., Phys. Rev. Lett. 118, 104801

HOLLOW CATHODE ARC PLASMA SOURCE

External heating of the cathode allows arc regime access < 50V

 \odot \odot \odot

HOLLOW CATHODE ARC PLASMA SOURCE

Longitudinal plasma density is measured using a triple Langmuir probe

Further relative measurements were done with plasma afterglow imaging

Matches well with AWA beam parameters

Parameter	Value	Unit
Plasma density	0.3 - 1.5	$10^{14} \ {\rm cm}^{-3}$
Plasma wavelength	6 - 3 (18 - 9)	mm (ps)
Matched β_{eq}	12 - 5	mm
Plasma column length	8	cm

WAKEFIELD MEASUREMENTS

SINGLE SHOT WAKEFIELD MEASUREMENT

Energy

- Horizontal slit increases temporal resolution
- Plasma off/on shots interlaced
- Time dependent energy centroid measured for each shot
- ~50 plasma off shots averaged for background measurement

Plasma Off

Plasma On

CURRENT DENSITY RECONSTRUCTION

Horizontal slit increases temporal resolution **BUT** at the cost of accurate current measurement due to y-z correlation

We can reconstruct the drive profile (up to a radial form factor) by approximating the **quasi-nonlinear regime** as a **linear plasma response** because $n_b/n_0 \approx 1$ in the drive

W. Lu Physics of Plasmas 12, 063101 (2005)

Simulated beam dist. out of EEX

$$n_b'' + k_p^2(n_b + n_1) = 0$$

$$\nabla \cdot \mathbf{E} = -4\pi e(n_b + n_1)$$

$$n_b(\xi) = -\frac{\epsilon_0}{e} \left[\frac{dE(\xi)}{d\xi} + k_p^2 \int_{-\infty}^{\xi} E(\xi') d\xi' \right]$$

CURRENT DENSITY RECONSTRUCTION

Generated various linearly ramped bunch profile heads

- double-triangle
- doorstep
- parabolic

Profiles taken from Lemery and Piot Phys. Rev. A & B (2015)

Calculated wakefield from single mode convolution

Reconstructed drive profile from wakefield $0 \le \xi < L_b$

$$n_b(\xi) = -\frac{\epsilon_0}{e} \left[\frac{dE(\xi)}{d\xi} + k_p^2 \int_{-\infty}^{\xi} E(\xi') d\xi' \right]$$

OBSERVATION OF HIGH TR

COMPARISON TO SIMULATION

ΔE (MeV

Quasi-3D simulations done in **WARP**

Input params:

-
$$Q_b = 1.8 \text{ nC}$$

- $\sigma_r = 200 \, \mu \text{m}$

-
$$\epsilon_n = 200 \text{ mm. mrad} -0.2$$

- $n_0 = 1.5 \times 10^{14} \text{ cm}^{-3}$

- $\lambda_p \approx 3 \text{ mm}$

Non-relativistic blowout $(r_m < \lambda_p)$ => drive wakefield approximates linear response

UNIFORMIZATION OF DRIVE WAKEFIELD

PROBING MULTI-PERIOD NONLINEARITIES

Plasma density is scanned

by changing on-axis solenoidal field while keeping the **same beam charge**

Nonlinearity of system

$$\Rightarrow \widetilde{Q} = n_b/n_0$$

Increasing plasma density reduces nonlinearities

Highest density wakefields appear **sinusoidal**, while low density wakes have **sawtooth** appearance

SUMMARY

- (RE)INTRODUCED PWFA EXPERIMENTS TO AWA
- OBSERVED HIGHEST TR FOR PWFA DUE TO NONLINEAR RESPONSE
- OBSERVED WAKEFIELD FLATTENING DUE TO PARABOLIC HEAD

THANKS TO EVERYONE WHO HELPED!

AWA

- John Power
- Manoel Conde
- Gwanghui Ha
- Jimin Seok
- Eric Wisniewski
- Scott Doran
- Charles whiteford
- Wanming Liu

UCLA

- Gerard Andonian
- James Rosenzweig
- Walter Lynn
- Kunal Sanwalka
- River Robles
- Claire Hansel
- Ahiua Deng
- Gerard Lawler

DOE SCGSR + DE-SC0017648

LINEAR RAMPS IN THE BLOWOUT REGIME

- Numerical calculation of blowout radius and on-axis wakefield from Lu. et.al
- At low beam densities blowout is sub-relativistic -> response approximates linear regime
- At high beam densities, blowout is relativistic -> wakefield inside drive becomes uniform

20

SINGLE SHOT HIGH TRANSFORMER RATIO MEASUREMENTS IN THE NONLINEAR PLASMA REGIME

Experimental beamline at AWA

Hollow cathode arc plasma source

