

LOW-ENERGY PASSIVE BEAM-BUNCHING ON THE WITNESS-BEAM LINE: A PROPOSAL

P. Piot^{1,2}, J. G. Power²

1 Northern Illinois University, DeKalb, IL

2 Argonne National Laboratory, Lemont, IL

<u>Credits:</u> This work was initiated with Francois Lemery (now at DESY) during his graduate studies at NIU and is also based on a submitted proposal by P. Piot and J. Power

INTRODUCTION & MOTIVATION

Passive longitudinal phase space manipulation is appealing owing to its simplicity.

The wakefield provides large (local) correlation in the longitudinal phase space (LPS)

- Use includes:
 - Energy "silencer" or dechirper,
 - Control of nonlinear correlation in the LPS:
 - Linearization
 - Nonlinear correlation for beam shaping
 - Generation of microbunch
 - Streaking (using dipole-mode wakefield)

PRINCIPLE

Wakefield structure introduces an energy modulation

$$\Delta \mathcal{E}(\zeta) = 2\kappa Q L \int_0^{\zeta} d\zeta_0 \cos[k(\zeta - \zeta_0)] \Lambda(\zeta_0)$$

- Downstream longitudinally-dispersive section generates the required R56
 - In a photoinjector $\gamma \sim \mathcal{O}(10)$ a drift yields

$$R_{56}(s) = \frac{s}{\gamma^2}$$

Likewise acceleration in a linac gives

$$R_{56}(s) = \frac{s}{\gamma_i \gamma_f}$$

Note that the smallest longitudinal feature attainable is

$$au_{\zeta} \simeq R_{56} \sigma_{\delta}^{u}$$

s is the drift/linac length γ_i , γ_f are the initial and final energies

In a photoinjector $\sigma_{\delta}^{u} \simeq 1 \, \, \mathrm{keV}$ and taking a meter-scale drive results in $\tau_{\zeta} \simeq 10~\mu\mathrm{m}$ (this is 30 fs!)

PRINCIPLE

- Tuning knobs include:
 - Wakefield amplitude and modulation wavelength (choice of structure geometry for a given set of beam parameters)
 - Incoming beam energy
 - R₅₆ parameter
 - Drift length (non-ultra-rel. case)
 - Chicane/beamline configuration
 - Linac
- The method is compatible with emittance compensation (if needed + with some work).

CAPABILITIES & APPLICATIONS

Features:

- This is a self-synchronized technique (no phase jitter)
- Compatible with high-repetition rate (preliminary tests done with a long train ~200 bunches)
- Work with any electron source (provided the structure's parameters are properly selected), could be a building block of a laser-free system

Possible applications:

- CW THz sources for pump-probe exp. at X-ray FELs (coupled to an SRF gun for high-repetition rate)
- Bunch compression of field emitted bunches
- Bunch shaping, drive/witness
- Generation of spikes for injection in high-frequency accelerators

BUNCH COMPRESSION & TRAIN GENERATION

- Wavelength of the wakefield compared to the bunch length set the modulation versus overall bunching regimes
- In simulations very high-peak currents observed
- Associated bunch form factors have very high frequency content (up to 10 THz)

COMBINING MULTIPLE STRUCTURES

- Multiple structures can be used to
 - form fine structures on the bunch similarly to echo-enabled harmonic generation
 - Tailor the shape of the current profile (by selecting wavelengths of the different structures)
- Transport becomes challenging due to the required beam focusing over the successive structures.
- Quadrupole wiggler discussed in Sasha Zholent's talk could alleviate such a problem

MOTIVATION FOR THE PRESENT WORK

- Initial proof-of-principle experiment performed at PITZ/DESY:
 - mm-period wakefield
 - modulation regime $\lambda < \sigma_z$
 - ~single-mode structure
 - Bunch train

[experimental results PRL122, 044801 (2019)]

- lacktriangle Bunch compression $\lambda \sim \sigma_z$
 - Single spike, e.g. for injection in highfrequency structures
 - Whole-bunch compression
- lacktriangle Modulation $\lambda < \sigma_z$
 - Multi-mode structures, multiple structures, impact of bunch shapegonne

USE OF THE WITNESS-BEAM BEAMLINE

- Well suited for the present proposal:
 - Low energy (<15 MeV)
 - Available space after gun
 - Linac + space for possible
 THz radiator
- Diagnostics will require some development

oosal:			
	/		
ın			
ole			
solen			

Parameter	Required value	Range	Unit
Beam energy	5-8	[=2-14]	MeV
Bunch charge	1	0.02-10	nC
Number of bunch per shot	1	2^{n} (n=0,5)	
Train frequency	5	0.1-5	Hz
RMS normalized emittance	~2 (1 nC)	[1,200]	μm
RMS bunch duration	2-5 (1 nC)	.5-10	ps
Peak current	50	<200	A

EXAMPLE (SANITY CHECK)

- Performed some first-pass simulation to check suitability of the witness-beam beamline
- Consider 1 nC, 12 ps plateau laser distribution, with 0.75 mm rms spot size on cathode with E=55 MV/m
- 5-cm long structure with fundamental mode 1.2 mm

6.1

5.7

10

(MeV/c) 5.9

OPPORTUNITIES FOR FURTHER R&D

So far we only consider dielectric-lined structure, optimization of structures could improve overall performance and versatility of the scheme.

For prolongated interaction a feedback mechanism (similar to a single-pass FEL) can develop [see Stupakov, PRSTAB 18, 030709 (2015)]. This could generate sub-mJ THz pulses.

Temporal diagnostic with required resolution (~50 fs) is challenging, exploring simple methods such as spatially encoded electro-optical imaging and/or self-streaking with (dipole) wakefield would be beneficial.

