Electric, Magnetic and Axial Form Factors from Lattice QCD

Rajan Gupta
Theoretical Division
Los Alamos National Laboratory, USA

PNDME Collab. clover-on-HISQ

- Tanmoy Bhattacharya
- Vincenzo Cirigliano
- Yong-Chull Jang
- Huey-Wen Lin
- Sungwoo Park
- Boram Yoon

Gupta et al, PRD96 (2017) 114503
Gupta et al, PRD98 (2018) 034503
Lin et al, PRD98 (2018) 094512
Gupta et al, PRD98 (2018) 091501

NME Collab. clover-on-clover

- Tanmoy Bhattacharya
- Vincenzo Cirigliano
- Yong-Chull Jang
- Balint Joo
- Huey-Wen Lin
- Kostas Orginos
- Sungwoo Park
- David Richards
- Frank Winters
- Boram Yoon

Outline

- Physics Motivation
- Electric and Magnetic form factors extracted from electron and muon scattering
- Axial vector form factors of nucleon needed for the analysis of neutrino-nucleus scattering:
- Monitoring neutrino flux
- Cross-section off various nuclear targets (LAr)
- Challenge: controlling systematic errors in the lattice QCD calculations of the matrix elements of axial and vector current operators within nucleon states

See Community White Paper: arXiv:1904.09931

High precision estimates of the matrix elements of quark bilinear operators within the nucleon state, obtained from "connected" and "disconnected" 3-point correlation functions, needed to address a number of important physics questions

Connected
Disconnected

Matrix elements within nucleon states required by many experiments

- Isovector charges $\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{S}}, \mathrm{g}_{\mathrm{T}}$
- Axial vector form factors
- Vector form factors
- Flavor diagonal matrix elements
- nEDM: Θ-term, quark EDM, quark chromo EDM, Weinberg operator, 4-quark operators
- $0 v \beta \beta$
- Generalized Parton Distribution Functions

5 Form Factors

- $G_{E}\left(Q^{2}\right)$ Electric
- $G_{M}\left(Q^{2}\right)$ Magnetic
- $G_{A}\left(Q^{2}\right)$ Axial
- $\tilde{G}_{P}\left(Q^{2}\right)$ Induced pseudoscalar
- $G_{P}\left(Q^{2}\right)$ Pseudoscalar
- The lattice methodology is the same
- Precise experimental data exit for $G_{E}\left(Q^{2}\right)$ and $G_{M}\left(Q^{2}\right)$
- Axial ward identity relates $G_{A}\left(Q^{2}\right), \tilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$

Lattice QCD has to predict all $5, g_{A}, \mu$

Calculating matrix elements using Lattice QCD

$\langle\Omega| \hat{N}\left(t, p^{\prime}\right) \hat{O}\left(\tau, p^{\prime}-p\right) \hat{N}(0, p)|\Omega\rangle=$
$\sum_{i, j}\langle\boldsymbol{\Omega}| \hat{N}\left(p^{\prime}\right)\left|N_{j}\right\rangle e^{-\int d t H}\left\langle N_{j}\right| \hat{O}\left(\tau, p^{\prime}-p\right)\left|N_{i}\right\rangle e^{-\int d t H}\left\langle N_{i}\right| \hat{N}(p)|\Omega\rangle=$
$\sum_{i, j}\langle\Omega| \hat{N}\left(p^{\prime}\right)\left|N_{j}\right\rangle e^{-E_{j}(t-\tau)}\left\langle N_{j}\right| \hat{O}\left(\tau, p^{\prime}-p\right)\left|N_{i}\right\rangle e^{-E_{i} \tau}\left\langle N_{i}\right| \hat{N}(p)|\Omega\rangle$

Electric \& Magnetic form factors

Matrix Elements of $V_{\mu} \rightarrow$ Dirac $\left(F_{1}\right)$ and Pauli $\left(F_{2}\right)$ form factors

$$
\left\langle N\left(p_{f}\right)\right| V^{\mu}(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\sigma^{\mu v} q_{v} \frac{F_{2}\left(q^{2}\right)}{2 M}\right] u\left(p_{i}\right)
$$

Define Sachs Electric $\left(\mathbf{G}_{\mathbf{E}}\right)$ and Magnetic $\left(\mathbf{G}_{\mathbf{M}}\right)$ form factors
$G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{4 M^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)$

Challenges to obtaining high precision results for matrix elements within nucleon states

- High Statistics: $\mathbf{O}(1,000,000)$ measurements
- Demonstrating control over all Systematic Errors:
- Contamination from excited states
- Q^{2} behavior of form factors
- Non-perturbative renormalization of bilinear operators ($\mathrm{RI}_{\text {smom }}$ scheme)
> Finite volume effects
$>$ Chiral extrapolation to physical m_{u} and m_{d} (simulate at physical point)
$>$ Extrapolation to the continuum limit (lattice spacing $a \rightarrow 0$)

Perform simulations on ensembles with multiple values of

$>$ Lattice size: $M_{\pi} L \rightarrow \infty$
$>$ Light quark masses: \rightarrow physical m_{u} and m_{d}
$>$ Lattice spacing: $a \rightarrow 0$

Analyzing lattice data $\Omega\left(a, M_{\pi}, M_{\pi} L\right)$: Simultaneous CCFV fits versus $a, M_{\pi}^{2}, M_{\pi} L$

Include leading order corrections to fit lattice data w.r.t.

- Lattice spacing: a
- Dependence on light quark mass: $m_{q} \sim M_{\pi}{ }^{2}$
- Finite volume: $M_{\pi} L$
$r_{A}^{2}\left(a, M_{\pi}, M_{\pi} L\right)=c_{0}+c_{1} \mathrm{a}+c_{2} M_{\pi}^{2}+c_{3} M_{\pi}^{2} e^{-M_{\pi} L^{L}}+\ldots$

Toolkit

- Multigrid Dirac invertor \rightarrow propagator $S_{F}=D^{-1} \eta$
- Truncated solver method with bias correction (AMA)
- Coherent source sequential propagator
- Deflation + hierarchical probing
- High Statistics
- 3-5 values of $t_{\text {sep }}$ with smeared sources for S_{F}
- 2-, 3-, n-state fits to multiple values of $t_{\text {sep }}$
- Non-perturbative methods for renormalization constants
- Combined extrapolation in $a, M_{\pi}, M_{\pi} L$ (CCFV)
- Variation of results with CCFV extrapolation Ansatz

Controlling excited-state contamination: n -state fit

$$
\begin{aligned}
& \Gamma^{2}(t)=\left|A_{0}\right|^{2} e^{-M_{0} t}+\left|A_{1}\right|^{2} e^{-M_{1} t}+\left|A_{2}\right|^{2} e^{-M_{2} t}+\left|A_{3}\right|^{2} e^{-M_{3} t}+\ldots \\
& \Gamma^{3}(t, \Delta t)=\left|A_{0}\right|^{2}\langle 0| O|0\rangle e^{-M_{0} \Delta t}+\left|A_{1}\right|^{2}\langle 1| O|1\rangle e^{-M_{1} \Delta t}+ \\
& \quad A_{0} A_{1}^{*}\langle 0| O|1\rangle e^{-M_{0} t} e^{-\Delta M(\Delta t-t)}+A_{0}^{*} A_{1}\langle 1| O|0\rangle e^{-\Delta M t} e^{-M_{0} \Delta t}+\ldots
\end{aligned}
$$

$\mathrm{M}_{0}, \mathrm{M}_{1}, \ldots$ masses of the ground \& excited states $\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots$ corresponding amplitudes

Make a simultaneous fit to data at multiple $\Delta t=t_{\text {sep }}=t_{f}-t_{i}$
KEY quantity to control: M_{1} (first excited state mass)

4-state fit to 2-point correlation function

g_{A} : Excited State Contamination

Status 2018: Isovector g_{A}, g_{S}, g_{T}

PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503
$g_{A}^{u-d}:$ PNDME \& CalLat agree within errors on 7 ensembles
CalLat: Nature: https://doi.org/10.1038/s41586-018-0161-8 PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503

	PNDME	Callat
a15m310	$1.228(25)$	$1.215(12)$
a 12 m 310	$1.251(19)$	$1.214(13)$
a 12 m 220 S	$1.224(44)$	$1.272(28)$
a12m220	$1.234(25)$	$1.259(15)$
a12m220L	$1.262(17)$	$1.252(21)$
a09m310	$1.235(15)$	$1.236(11)$
a09m220	$1.260(19)$	$1.253(09)$

CalLat uses a variant of the summation method
Difference comes from the Chiral-Continuum fits:

- CalLat chiral fit anchored by heavier pion masses
- CalLat have not yet analyzed the $\mathrm{a}=0.06 \mathrm{fm}$ lattices

Steps in the FF calculations

- Calculate matrix elements for different $t_{\text {sep }}$
- Control excited-state contamination: $p=0, p \neq 0$
- From different Lorentz components \& the momentum dependence extract the form factors
- Fit Q^{2} behavior of $G_{i}\left(q^{2}\right)$: (dipole, z-expansion, ...)
- Calculate $r_{i}\left(a, M_{\pi}, M_{\pi} L\right):\left\langle r_{i}^{2}\right\rangle=-\frac{6}{d q^{2}}\left[\frac{\hat{C}_{i}\left(q^{2}\right)}{\hat{G}_{i}(0)}\right]_{q^{2}-0}$
- Extrapolate $r_{i}\left(\mathrm{a} \rightarrow 0, \mathrm{M}_{\pi} \mathrm{L} \rightarrow \infty, \mathrm{M}_{\pi} \rightarrow 135 \mathrm{MeV}\right)$

Electric \& Magnetic form factors

Matrix Elements of $V_{\mu} \rightarrow$ Dirac $\left(F_{1}\right)$ and Pauli $\left(F_{2}\right)$ form factors

$$
\left\langle N\left(p_{f}\right)\right| V^{\mu}(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\sigma^{\mu v} q_{v} \frac{F_{2}\left(q^{2}\right)}{2 M}\right] u\left(p_{i}\right)
$$

Define Sachs Electric $\left(\mathbf{G}_{\mathbf{E}}\right)$ and Magnetic $\left(\mathbf{G}_{\mathbf{M}}\right)$ form factors
$G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{4 M^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)$

Extracting EM form factors

$$
\begin{aligned}
& \sqrt{2 E_{p}\left(M_{N}+E_{p}\right)} \operatorname{Re}\left(R_{i}\right)=-\epsilon_{i j 3} q_{j} G_{M} \\
& \sqrt{2 E_{p}\left(M_{N}+E_{p}\right)} \operatorname{Im}\left(R_{i}\right)=q_{i} G_{E} \\
& \sqrt{2 E_{p}\left(M_{N}+E_{p}\right)} \operatorname{Re}\left(R_{4}\right)=\left(M_{N}+E_{p}\right) G_{E}
\end{aligned}
$$

Each matrix element gives one form factor
ESC in $\operatorname{Im}\left(R_{i}\right)$ is large

Experimental Results

$$
\begin{aligned}
\mathrm{r}_{\mathrm{E}} & =0.875(6) \mathrm{fm} \\
\mathrm{r}_{\mathrm{E}} & =0.8409(4) \mathrm{fm}
\end{aligned}
$$

$$
\mathrm{r}_{\mathrm{M}}=0.86(3) \mathrm{fm}
$$

$$
\mu_{\mathrm{P}}=2.7928
$$

$$
\mu_{\mathrm{N}}=-1.9130
$$

$$
r_{E_{n-n}}^{p-n}=0.93 \mathrm{fm}
$$

$$
r_{M}^{p-n}=0.87 \mathrm{fm}
$$

Isovector radii

Clover-on-HISQ data

Data collapse into a single curve implies that $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$ are insensitive to the lattice spacing, pion mass, lattice volume

The phenomenological Kelly curve shown for reference. It is not the target of lattice calculations!

Clover-on-HISQ data

Comparison of $M_{\pi} \sim 135 \mathrm{MeV}$ data

Data from different collaborations collapsing onto a single curve implies that $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$ are also insensitive to the number of flavors: $2,2+1,2+1+1$

Comparison of $M_{\pi} \sim 135 \mathrm{MeV}$ data

Clover-on-clover data

NME unpublished

Kelly Parameterization

Kelly parameterization of the experimental data for G_{E}, G_{M}

$$
\hat{G}_{X}\left(Q^{2}\right)=\frac{\hat{G}(0) \sum_{k=0}^{n} a_{k} \tau^{k}}{\left\{1+\sum_{k=1}^{n+2} b_{k} \tau^{k}\right\}}, \quad \hat{G}_{Y}\left(Q^{2}\right)=\frac{A \tau}{1+B \tau} \frac{1}{\left(1+Q^{2} / 0.71 \mathrm{GeV}^{2}\right)^{2}}
$$

where $\tau=Q^{2} / 4 \mathcal{M}^{2}$. The parameters $\mathcal{M}, G(0), a_{k}, b_{k}, A$, and B are determined from fit to the data.

z-expansion

The form factors are analytic functions of Q^{2} below a cut starting at n-particle threshold $t_{\text {cut }}$.
A model independent approach is the z-expansion:

$$
\hat{G}\left(Q^{2}\right)=\sum_{k=0}^{\infty} a_{k} z\left(Q^{2}\right)^{k} \quad \text { with } \quad z=\frac{\sqrt{t_{\text {cut }}+Q^{2}}-\sqrt{t_{\text {cut }}+Q_{0}^{2}}}{\sqrt{t_{\text {cut }}+Q^{2}}+\sqrt{t_{\text {cut }}+Q_{0}^{2}}}
$$

with $t_{\text {cut }}=4 m_{\pi}^{2}$ for $G_{E, M}$ and $t_{\text {cut }}=9 m_{\pi}^{2}$ for G_{A}. We choose $Q_{0}=0$
Incorporate $1 / Q^{4}$ behavior as $\mathrm{Q}^{2} \rightarrow \infty$ via sum rules
Impose Bound $\left|a_{k}\right|<5$
Results independent of truncation for $\mathrm{k} \geq 4$

Is dipole a good model?

Yes for $G_{E}(\sim 1 \%)$, not so for $G_{M}(\sim 6 \%)$
Thanks to D. Higinbotham for providing his version of the binned Mainz data

Summary:

Electric and Magnetic form factors

- $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$ show small variation with a and M_{π} : PNDME data (9 clover-on-HISQ ensembles) fall on a single curve
- The curve becomes narrower and closer to the "Kelly curve" when plotted versus Q^{2} / M_{N}^{2}
- World data for $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$ with $M_{\pi} \sim 135 \mathrm{MeV}$ also collapse to this curve
- Deviations from the "Kelly curve" are within possible errors
- Excited-state effects large at small Q^{2} for $G_{M}\left(Q^{2}\right)$
- Excited-state effects in G_{E} small for $\mathrm{Q}^{2} \sim 0$, but increase with Q^{2}
- Lattice artifacts increase as Q^{2} increases

Axial-vector form factors

On the lattice we can calculate 3 form factors from ME of V_{μ} and A_{μ} :

- Axial: G_{A}
- Induced pseudoscalar: \tilde{G}_{P}
- Pseudoscalar: G_{P}
$\left\langle N\left(p_{f}\right)\right| A^{\mu}(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} G_{A}\left(q^{2}\right)+q_{\mu} \frac{\tilde{G}_{P}\left(q^{2}\right)}{2 M}\right] \gamma_{5} u\left(p_{i}\right)$
$\left\langle N\left(p_{f}\right)\right| P(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right) G_{P}\left(q^{2}\right) \gamma_{5} u\left(p_{i}\right)$
The 3 form factors are related by PCAC $\partial_{\mu} A_{\mu}=2 m P$

$\mathrm{PCAC}\left(\partial_{\mu} A_{\mu}=2 \widehat{m} \mathrm{P}\right)$ requires

$$
2 \widehat{m} G_{P}\left(Q^{2}\right)=2 M_{N} G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{N}} \tilde{G}_{P}\left(Q^{2}\right)
$$

Pion pole-dominance hypothesis

If pion pole-dominance holds
\Rightarrow there is only one independent form factor
Goldberger-Treiman relation

$$
F_{\pi} g_{\pi N N}=M_{N} g_{A}
$$

Dipole ansatz for q^{2} behavior of G_{E}, G_{M}, G_{A}

$$
G_{i}\left(q^{2}\right)=\frac{G_{i}(0)}{\left(1+\frac{q^{2}}{M_{i}^{2}}\right)^{2}}
$$

M_{i} is the dipole mass

- Corresponds to exponential decaying distribution
- Has the desired l / q^{4} behavior for $q^{2} \rightarrow \infty$

The charge radii are defined as

$$
\begin{aligned}
\left\langle r_{i}^{2}\right\rangle & =-\frac{6}{d q^{2}}\left[\frac{\hat{G}_{i}\left(q^{2}\right)}{\hat{G}_{i}(0)}\right]_{q^{2}=0} \\
\left\langle r_{i}^{2}\right\rangle & =\frac{12}{M_{i}^{2}}
\end{aligned}
$$

Experimental Results

$$
\begin{array}{ll}
\mathrm{r}_{\mathrm{A}}=0.80(17) \mathrm{fm} & v \text { scattering } \\
\mathrm{r}_{\mathrm{A}}=0.74(12) \mathrm{fm} & \text { Electroproduction } \\
\mathrm{r}_{\mathrm{A}}=0.68(16) \mathrm{fm} & \text { Deuterium target }
\end{array}
$$

Extracting Axial form factors

$$
\begin{aligned}
& \operatorname{Im}\left(R_{51}\right)=4 M_{N}\left(-\frac{q_{1} q_{3}}{2 M_{N}} \widetilde{G_{P}}\right) \\
& \operatorname{Im}\left(R_{52}\right)=4 M_{N}\left(-\frac{q_{1} q_{3}}{2 M_{N}} \widetilde{G_{P}}\right) \\
& \operatorname{Im}\left(R_{53}\right)=4 M_{N}\left(\left(M_{N}+E\right) G_{A}-\frac{q_{3}^{2}}{2 M_{N}} \widetilde{G_{P}}\right) \\
& \operatorname{Re}\left(R_{54}\right)=4 M_{N} q_{3}\left(G_{A}+\frac{M_{N}-E}{2 M_{N}} \widetilde{G_{P}}\right)
\end{aligned}
$$

ESC in R_{54} is large

Clover-on-HISQ data

PNDME unpublished

NOTE: The two dipole curves with $M_{A}=1.35$ and $M_{A}=1.026$ are drawn to only provide a reference for the spread and uncertainty in the lattice data

Clover-on-clover data

NME unpublished

The statistics of the a091m170 data (blue squares) will be increased by 4 X

PACS: Data at small Q^{2}

PhysRevD.99.014510

> Do $G_{A}, \widetilde{G_{p}}, G_{p}$ satisfy PCAC? Brief statement of an unsolved issue

The operator relation ($\partial_{\mu} A_{\mu}=2 \widehat{m P}$) holds when inserted in correlation functions in lattice data. PCAC also implies a relation between form factors

$$
2 \widehat{m} G_{P}\left(Q^{2}\right)=2 M_{N} G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{N}} \tilde{G}_{P}\left(Q^{2}\right)
$$

This is violated.

We have tracked the problem to ME of $\partial_{4} A_{4} \neq(E-m) A_{4}$

Since this relation should hold in the ground state, what do large violations at $\mathrm{t}_{\text {sep }} \sim 1.5 \mathrm{fm}$ imply for control over ESC?

Summary

- Data for isovector charges and form factors becoming precise at the few percent level for $\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$
- Need to understand why the 3 form factors $\boldsymbol{G}_{\boldsymbol{A}}, \widetilde{\boldsymbol{G}_{p}}, \boldsymbol{G}_{\boldsymbol{p}}$ do not satisfy PCAC
- Lattice values of the charge radii r_{A} are smaller than "phenomenological" estimates.
- Are all the systematics under control?
- Need data at smaller Q^{2} to improve $<r_{i}^{2}>$ (PACS)
- Disconnected contributions reaching similar maturity

