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Outline
• Physics Motivation

– Electric and Magnetic form factors extracted from 
electron and muon scattering

– Axial vector form factors of nucleon needed for the 
analysis of neutrino-nucleus scattering:

• Monitoring neutrino flux
• Cross-section off various nuclear targets (LAr) 

• Challenge: controlling systematic errors in the lattice 
QCD calculations of the matrix elements of axial and 
vector current operators within nucleon states

See Community White Paper:  arXiv:1904.09931



High precision estimates of the matrix elements of quark 
bilinear operators within the nucleon state, obtained from 

“connected” and “disconnected” 3-point correlation functions, 
needed to address a number of important physics questions 
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Connected Disconnected



Matrix elements within nucleon 
states required by many experiments

• Isovector charges gA, gS, gT

• Axial vector form factors 

• Vector form factors

• Flavor diagonal matrix elements

• nEDM: Θ-term, quark EDM, quark chromo 
EDM, Weinberg operator, 4-quark operators

• 0νββ

• Generalized Parton Distribution Functions
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5 Form Factors
• 𝐺# 𝑄% Electric
• 𝐺& 𝑄% Magnetic
• 𝐺' 𝑄% Axial
• 𝐺() 𝑄% Induced pseudoscalar
• 𝐺) 𝑄% Pseudoscalar
• The lattice methodology is the same
• Precise experimental data exit for 𝐺# 𝑄% and 𝐺& 𝑄%

• Axial ward identity relates 𝐺' 𝑄% , 𝐺() 𝑄% , 𝐺) 𝑄%

Lattice QCD has to predict all 5, gA, µ



Calculating matrix elements using 
Lattice QCD
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O

n p
×

Isolate the neutron e-Mn (t-|τ) Project on the proton e-Mpτ

ud

uu
d d

Ω N̂(t, p ')Ô(τ, p '− p)N̂(0, p) Ω =

Ω N̂(p ') N j e
− dt H∫ N j Ô(τ, p '− p) Ni e

− dt H∫ Ni N̂(p) Ωi, j∑ =

Ω N̂(p ') N j e
−Ej (t−τ ) N j Ô(τ, p '− p) Ni e

−Eiτ Ni N̂(p) Ωi, j∑



Electric & Magnetic form factors
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N(pf ) V
µ (q) N(pi ) = u(pf ) γ

µF1(q
2 )+σ µνqν

F2 (q
2 )

2M
⎡

⎣
⎢

⎤

⎦
⎥u(pi )

GE (q
2 ) = F1(q

2 )− q2

4M 2 F2 (q
2 ), GM (q

2 ) = F1(q
2 )+F2 (q

2 )

Matrix Elements of Vµ→ Dirac (F1) and Pauli (F2) form factors

Define Sachs Electric (GE) and Magnetic (GM) form factors



Challenges to obtaining high precision results 
for matrix elements within nucleon states

– High Statistics: O(1,000,000) measurements
– Demonstrating control over all Systematic Errors:  

• Contamination from excited states
• Q2 behavior of form factors
• Non-perturbative renormalization of bilinear operators (RIsmom scheme)
Ø Finite volume effects
Ø Chiral extrapolation to physical mu and md (simulate at physical point)
Ø Extrapolation to the continuum limit (lattice spacing a → 0)

Perform simulations on ensembles with multiple values of 
Ø Lattice size: Mπ L→ ∞
Ø Light quark masses: → physical mu and md
Ø Lattice spacing: a → 0



Analyzing lattice data Ω(a, Mπ, Mπ L): 
Simultaneous CCFV fits versus  a, Mπ

2, Mπ L
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Include leading order corrections to fit lattice data w.r.t.

• Lattice spacing: a

• Dependence on light quark mass: mq ~  Mπ
2

• Finite volume:  Mπ L

r2
A 𝑎,𝑀-,𝑀-𝐿 = 𝑐1 + 𝑐2a + 𝑐% 𝑀-

% + 𝑐3𝑀-
%	𝑒6&78+ …



Toolkit
• Multigrid Dirac invertor → propagator  SF = D-1η
• Truncated solver method with bias correction (AMA)
• Coherent source sequential propagator
• Deflation + hierarchical probing
• High Statistics
• 3-5 values of tsep with smeared sources for SF

• 2-, 3-, n-state fits to multiple values of tsep

• Non-perturbative methods for renormalization constants
• Combined extrapolation in a,  Mπ ,  MπL  (CCFV)
• Variation of results with CCFV extrapolation Ansatz



Controlling excited-state contamination: n-state fit
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M0, M1, … masses of the ground & excited states 
A0, A1, …   corresponding amplitudes 

Γ3(t,Δt) = A0
2 0 O 0 e−M0 Δt + A1

2 1O 1 e−M1Δt +

A0A1
* 0 O 1 e−M0 Δte−ΔM (Δt−t ) + A0

*A1 1O 0 e−ΔM te−M0Δt +...

n p
×

ti
Δt = tsep = tf - ti tf

O(t)

Make a simultaneous fit to data at multiple Δt = tsep =tf - ti

Γ2 (t) = A0
2 e−M0 t + A1

2 e−M1 t + A2
2 e−M2 t + A3

2 e−M3 t +....

KEY quantity to control: M1 (first excited state mass)



4-state fit to 2-point correlation function
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gA: Excited State Contamination

14Data from 9 clover-on-HISQ ensembles and 3*-state fits : Gupta et al, PhysRevD.98.034503
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Status 2018: Isovector gA, gS, gT
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PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503



𝒈𝑨𝒖6𝒅:		PNDME & CalLat agree within errors on 7 ensembles

PNDME CalLat
a15m310 1.228(25) 1.215(12)
a12m310 1.251(19) 1.214(13)
a12m220S 1.224(44) 1.272(28)
a12m220 1.234(25) 1.259(15)
a12m220L 1.262(17) 1.252(21)
a09m310 1.235(15) 1.236(11)
a09m220 1.260(19) 1.253(09)

CalLat uses a variant of the summation method

CalLat: Nature: https://doi.org/10.1038/s41586-018-0161-8 
PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503

Difference comes from the Chiral-Continuum fits:
• CalLat chiral fit anchored by heavier pion masses
• CalLat have not yet analyzed the a=0.06fm lattices



Steps in the FF calculations
• Calculate matrix elements for different tsep

• Control excited-state contamination: p=0, p≠0
• From different Lorentz components & the 

momentum dependence extract the form factors
• Fit Q2 behavior of Gi(q2): (dipole, z-expansion, …)

• Calculate ri(a, Mπ, MπL):

• Extrapolate ri (a→0,  MπL→∞,  Mπ→135MeV)

ri
2 = −

6
dq2

Ĝi (q
2 )

Ĝi (0)

⎡

⎣
⎢

⎤

⎦
⎥
q2=0



Electric & Magnetic form factors
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N(pf ) V
µ (q) N(pi ) = u(pf ) γ

µF1(q
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F2 (q
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Extracting EM form factors

2𝐸@ 𝑀A + 𝐸@
� 		𝑅𝑒 𝑅E = −𝜖EH3𝑞H	𝐺&

2𝐸@ 𝑀A + 𝐸@
� 		𝐼𝑚 𝑅E = 𝑞E	𝐺#

2𝐸@ 𝑀A + 𝐸@
� 		𝑅𝑒 𝑅L = 𝑀A + 𝐸@ 	𝐺#

Each matrix element gives one form factor
ESC in Im (𝑅E) is large 



Experimental Results
rE = 0.875(6) fm
rE = 0.8409(4) fm

rM = 0.86(3) fm

µP =   2.7928
µN = -1.9130

Electron scattering     
Muonic hydrogen

𝑟#
@6N = 0.93 fm
𝑟&
@6N = 0.87 fm Isovector radii

We will focus on the primary quantities 𝐺# 𝑄% , 𝐺& 𝑄%



Clover-on-HISQ data
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Data collapse into a single curve implies that  
𝐺# 𝑄% , 𝐺& 𝑄% are insensitive to the lattice 
spacing, pion mass, lattice volume

The phenomenological Kelly curve shown for reference.
It is not the target of lattice calculations! 



Clover-on-HISQ data
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Comparison of Mπ ~ 135MeV data
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Data from different collaborations collapsing onto a 
single curve implies that 𝐺# 𝑄% , 𝐺& 𝑄% are also 
insensitive to the number of flavors: 2, 2+1, 2+1+1



Comparison of Mπ ~ 135MeV data
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Clover-on-clover data
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fit ansatz
A model independent approach is the z-expansion:

Ĝ(Q2) =
1X

k=0

akz(Q
2)k with z =

p
tcut +Q2 �

p
tcut +Q2

0p
tcut +Q2 +

p
tcut +Q2

0

with tcut = 4m2
⇡ for GE,M and tcut = 9m2

⇡ for GA. We choose Q0 = 0

Kelly parameterization of the experimental data for GE , GM

ĜX(Q2) =
Ĝ(0)

Pn
k=0 ak⌧

k

(
1 +

n+2X

k=1

bk⌧
k

) , ĜY (Q
2) =

A⌧

1 +B⌧

1
⇣
1 +Q2/0.71GeV2

⌘2

where ⌧ = Q2/4M2. The parameters M, G(0), ak, bk, A, and B are
determined from fit to the data.

4 / 4

Kelly Parameterization

Do the ”experimental data” have all corrections included?



fit ansatz
A model independent approach is the z-expansion:
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z-expansion
The form factors are analytic functions of Q2

below a cut starting at n-particle threshold tcut. 

Impose Bound |𝑎P| < 5

Results independent of truncation for k ≥ 4

Incorporate 1/Q4 behavior as Q2 →∞ via sum rules



Is dipole a good model?
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dipole fit to Mainz data for GE 

Thanks to D. Higinbotham for providing his version of the binned Mainz data

Mainz GE data
dipole fit 

Yes for GE (~1%), not so for GM (~6%)



Summary: 
Electric and Magnetic form factors

• 𝐺# 𝑄% , 𝐺& 𝑄% show small variation with a and Mπ: 
PNDME data (9 clover-on-HISQ ensembles) fall on a single 
curve

• The curve becomes narrower and closer to the “Kelly curve” 
when plotted versus 𝑄%/𝑀A

%

• World data for 𝐺# 𝑄% , 𝐺& 𝑄% with Mπ ~ 135MeV also 
collapse to this curve

• Deviations from the “Kelly curve” are within possible errors
– Excited-state effects large at small 𝑄%	for 𝐺& 𝑄% 	

– Excited-state effects in	𝐺# small for Q% ∼ 0,	but increase with 𝑄%	

– Lattice artifacts increase as 𝑄% increases



Axial-vector form factors
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Aµ

γµγ5
gA

Aµ

γµγ5
GA(Q2)

Aµ

√
2 gπNN γ

5

√

2 qµFπ

∼
1

Q2+M2
π

N(pf ) A
µ (q) N(pi ) = u(pf ) γ

µGA (q
2 )+ qµ

!GP (q
2 )

2M
⎡

⎣
⎢

⎤

⎦
⎥γ5u(pi )

On the lattice we can calculate 3 form factors from ME of Vµ and Aµ: 
• Axial: GA
• Induced pseudoscalar: 𝐺(P
• Pseudoscalar: GP

𝑁(𝑝\) 𝑃(𝑞) 𝑁(𝑝E) = �̀� 𝑝\ 𝐺) 𝑞% 𝛾b	𝑢(𝑝E)

The 3 form factors are related by PCAC   𝜕d𝐴d = 2𝑚𝑃



PCAC (𝜕d𝐴d = 2𝑚fP) requires

𝐺)g 𝑄% = 𝐺' 𝑄%
4𝑀A

%

𝑄% +𝑀-
%

If pion pole-dominance holds 
⇒ there is only one independent form factor

Goldberger-Treiman relation
𝐹-		𝑔-AA = 𝑀A	𝑔'

Pion pole-dominance hypothesis
Aµ

√
2 gπNN γ

5

√

2 qµFπ

∼
1

Q2+M2
π



Dipole ansatz for q2 behavior of GE , GM , GA
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Gi(𝑞%) =
kl(1)

2mno

pl
o

o

• Corresponds to exponential decaying distribution
• Has the desired 1/q4 behavior for q2→∞

The charge radii are defined as

Mi is the dipole mass

𝑟E% =
12
𝑀E
%

ri
2 = −

6
dq2

Ĝi (q
2 )

Ĝi (0)

⎡

⎣
⎢

⎤

⎦
⎥
q2=0



Experimental Results

rA = 0.80(17) fm

rA = 0.74(12) fm

rA = 0.68(16) fm

ν scattering 

Electroproduction

Deuterium target



Extracting Axial form factors

𝑅𝑒 𝑅bL = 4	𝑀A	𝑞3 𝐺' +
𝑀A − 𝐸
2𝑀A

		𝐺)g

ESC in 𝑅bL is large 

Im 𝑅b3 = 4	𝑀A 	 𝑀A + 𝐸 𝐺' −
rso

%&t
		𝐺)g

Im 𝑅b2 = 4	𝑀A 	 −
rurs
%&t

		𝐺)g

Im 𝑅b% = 4	𝑀A 	 −
rurs
%&t

		𝐺)g



Clover-on-HISQ data
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NOTE: The two dipole curves with 𝑀' = 1.35 and
𝑀' = 1.026 are drawn to only provide a reference 
for the spread and uncertainty in the lattice data

PNDME unpublished



Clover-on-clover data
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The statistics of the a091m170 data (blue squares) 
will be increased by 4X

NME unpublished



PACS: Data at small Q2

PhysRevD.99.014510



Do 𝑮𝑨, 𝑮𝒑g	, 𝑮𝒑	satisfy PCAC? 

The operator relation (𝜕d𝐴d = 2𝑚fP) holds when 
inserted in correlation functions in lattice data.  
PCAC also implies a relation between form factors 

This is violated.  

We have tracked the problem to ME of 
𝜕L𝐴L ≠ 𝐸 −𝑚 𝐴L

Since this relation should hold in the ground state, what do
large violations at tsep ~ 1.5 fm imply for control over ESC?

Brief statement of an unsolved issue



Summary
• Data for isovector charges and form factors becoming 

precise at the few percent level for Q2<1 GeV2

• Need to understand why the 3 form factors 
𝑮𝑨, 𝑮𝒑g	, 𝑮𝒑	do not satisfy PCAC

• Lattice values of the charge radii rA are smaller than 
“phenomenological” estimates.  

• Are all the systematics under control? 
• Need data at smaller Q2 to improve < 𝑟E% > (PACS)
• Disconnected contributions reaching similar maturity


