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Exclusive cross sections in neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles
candidate Pzt o -
@ CP violating phase
Run 5390, Event 1100
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@ need to use measured reaction products to constrain E,, of the event

DUNE, MiniBooNE, T2K, Minerva, NOVA,. ..

Sanford Underground
Research Facility
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|dealized algorithm for exclusive processes at fixed q
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state
@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state

@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states

o further time evolution to let system decay
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state

@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states

o further time evolution to let system decay

@ measure asymptotic state in detector
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The nuclear many-body problem

A controllable theory for nuclear systems

H= Zp—+ ZV;]—F ZWUk—i—

(N

@ much easier to deal with than not the QCD lagragian
@ being non-perturbative it is still extremely challenging
o nuclear states live in huge Hilbert spaces: dim (H) > 44

Alessandro Roggero FNAL - 09 May 2019 3/10



The nuclear many-body problem

A controllable theory for nuclear systems
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@ much easier to deal with than not the QCD lagragian
@ being non-perturbative it is still extremely challenging
o nuclear states live in huge Hilbert spaces: dim (H) > 44

Great success for light systems with regular (super) computers
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Classical algorithm for exclusive processes at fixed g

prepare the target ground state (closed-shell and/or small)
right after scattering vertex the target is left in excited state

energy measurement selects subset of final nuclear states (Lovato's talk)

further time evolution to let system decay
@ measure asymptotic state in detector
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What is a Quantum computer?
JQI@Univ; ‘of MD

Google Righetti

Classical Bit Qubit

o N bits: an integer number < 2V
o N qubits: a vector [¢) in 2V-dim Hilbert-space

— exponentially more information available

@ Microsoft?
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Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows the conjecture is correct for local interactions
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Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows the conjecture is correct for local interactions

@ physical states can be mapped in states of ~ loga(2) qubits

o choose a finite basis to discretize system — dim(H) = Q oc e J
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Quantum algorithm for exclusive processes at fixed q
@ prepare the target ground state on a finite qubit basis
@ right after scattering vertex the target is left in excited state
@ energy measurements selects subset of final nuclear states
o further time evolution to let system decay
@ measure asymptotic state in detector
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state
@ energy measurements selects subset of final nuclear states

o further time evolution to let system decay

@ measure asymptotic state in detector
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurements selects subset of final nuclear states (finite Aw)
o further time evolution to let system decay

@ measure asymptotic state in detector
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurements selects subset of final nuclear states (finite Aw)
o further approximate time evolution to let system decay

@ measure asymptotic state in detector
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How practical is all this?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution
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How practical is all this?
e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]

@ 10x faster gates and negligible error correction cost (very optimistic)

e want R(q,w) with 20 MeV energy resolution

we need a quantum device with ~ 4000 qubits (current record is 72) J
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Where are we right now?
figure adapted from Google Al

Need Both Quality and Quantity
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Summary

@ understanding low-energy dynamics of nuclear many-body systems is
important for current and planned neutrino oscillation experiments
o remarkable progress for inclusive x-sec of light nuclei (See Lovato's talk)

o still not enough for exclusive scattering off °Ar, need new ideas: short
time approximation(See Carlson’s talk)? quantum computing?

@ QC is an emerging technology with the potential of revolutionarize the
way theory calculations are done

@ we already know how to simulate efficiently the time-evolution of non
relativistic systems and how to study exclusive scattering

@ more work has to be done to make all this viable in the near term
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Collaborators:

e J.Carlson (LANL) - Los Alamos

NATIONAL LABORATORY
EST.1943
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