
Exclusive nucleus- ν cross sections from quantum computers

Alessandro Roggero

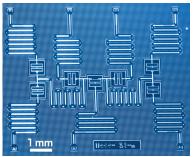
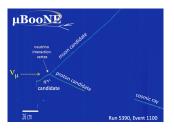
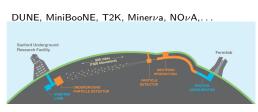


figure credit: JLAB collab.


figure credit: IBM

FNAL - 09 May, 2019

Exclusive cross sections in neutrino oscillation experiments



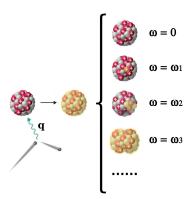
Goals for ν oscillation exp.

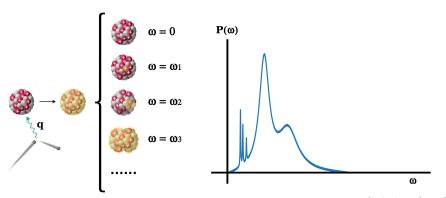
- neutrino masses
- accurate mixing angles
- CP violating phase

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

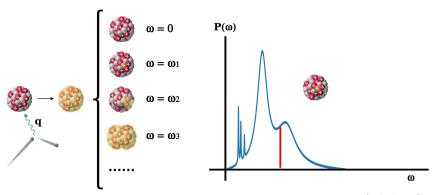
ullet need to use measured reaction products to constrain $E_
u$ of the event

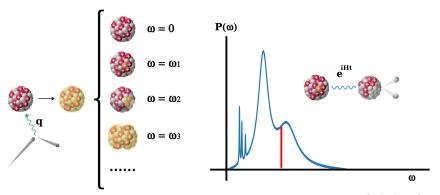
Alessandro Roggero FNAL - 09 May 2019


• prepare the target ground state

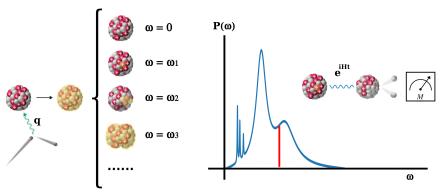

- prepare the target ground state
- right after scattering vertex the target is left in excited state

- prepare the target ground state
- right after scattering vertex the target is left in excited state


- prepare the target ground state
- right after scattering vertex the target is left in excited state


Roggero & Carlson (2018)

Alessandro Roggero


- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay

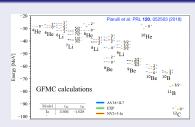
- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

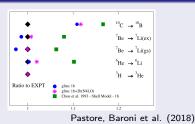
The nuclear many-body problem

A controllable theory for nuclear systems

$$H = \sum_{i} \frac{p^{2}}{2m} + \frac{1}{2} \sum_{i,j} V_{ij} + \frac{1}{6} \sum_{i,j,k} W_{ijk} + \cdots$$

- much easier to deal with than not the QCD lagragian
- being non-perturbative it is still extremely challenging
 - nuclear states live in huge Hilbert spaces: $dim(\mathcal{H}) > 4^A$

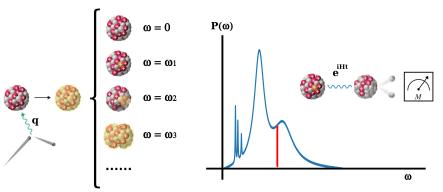

The nuclear many-body problem

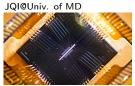

A controllable theory for nuclear systems

$$H = \sum_{i} \frac{p^{2}}{2m} + \frac{1}{2} \sum_{i,j} V_{ij} + \frac{1}{6} \sum_{i,j,k} W_{ijk} + \cdots$$

- much easier to deal with than not the QCD lagragian
- being non-perturbative it is still extremely challenging
 - nuclear states live in huge Hilbert spaces: $dim(\mathcal{H}) > 4^A$

Great success for light systems with regular (super) computers

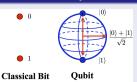



FNAL - 09 May 2019 3 / 10

Classical algorithm for exclusive processes at fixed q

- prepare the target ground state (closed-shell and/or small)
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states (Lovato's talk)
- further time evolution to let system decay
- measure asymptotic state in detector

What is a Quantum computer?



Microsoft?

Bits vs Qubits

- ullet N bits: an integer number $<2^N$
- N qubits: a vector $|\psi\rangle$ in 2^N -dim Hilbert-space \implies exponentially more information available

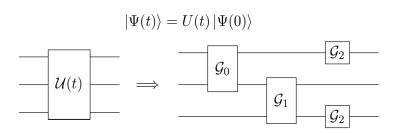
Alessandro Roggero FNAL - 09 May 2019 5 / 10

Quantum Simulations with qubits

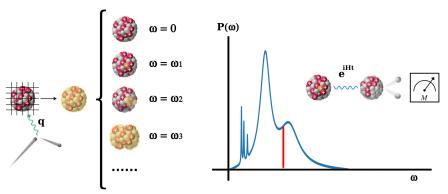
"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

— R.Feynman (1982)

• in 1996 S.Lloyd shows the conjecture is correct for local interactions

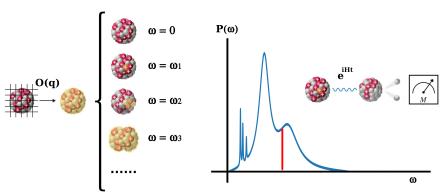

Alessandro Roggero FNAL - 09 May 2019 6 / 10

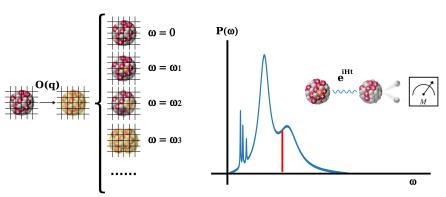
Quantum Simulations with qubits


"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

— R.Feynman (1982)

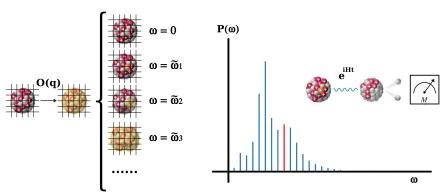
- in 1996 S.Lloyd shows the conjecture is correct for local interactions
- choose a finite basis to discretize system $\longrightarrow dim(\mathcal{H}) = \Omega \propto e^A$
- ullet physical states can be mapped in states of $\sim log_2(\Omega)$ qubits


- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector


Roggero & Carlson (2018)

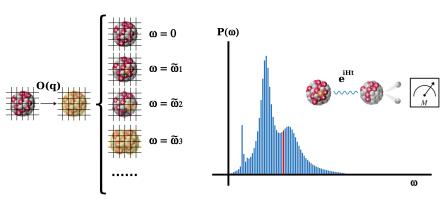
Alessandro Roggero

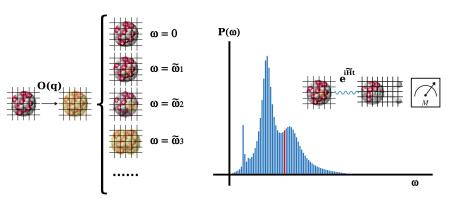
- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector


- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

Roggero & Carlson (2018)

7/10


- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- ullet energy measurements selects subset of final nuclear states (finite $\Delta\omega$)
- further time evolution to let system decay
- measure asymptotic state in detector


Roggero & Carlson (2018)

Alessandro Roggero

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- ullet energy measurements selects subset of final nuclear states (finite $\Delta\omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

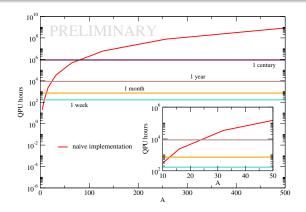
- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- ullet energy measurements selects subset of final nuclear states (finite $\Delta\omega$)
- further approximate time evolution to let system decay
- measure asymptotic state in detector

Roggero & Carlson (2018)

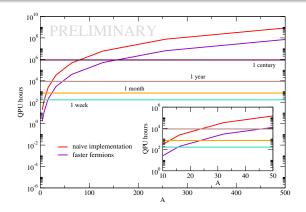
7/10

Alessandro Roggero FNAL - 09 May 2019

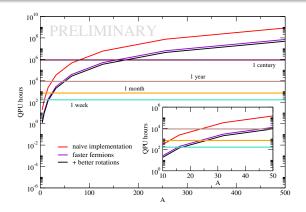
- pionless EFT on a 10^3 lattice of size 20 fm [a=2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with $20~{\rm MeV}$ energy resolution


Alessandro Roggero FNAL - 09 May 2019 8 / 10

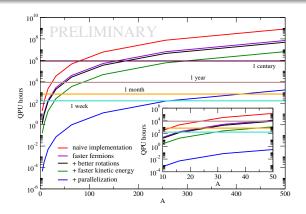
- pionless EFT on a 10^3 lattice of size 20 fm [a=2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution


we need a quantum device with ≈ 4000 qubits (current record is 72)

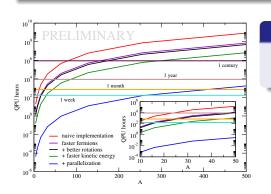
Alessandro Roggero FNAL - 09 May 2019 8 / 10


- pionless EFT on a 10^3 lattice of size 20 fm [a=2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with 20 MeV energy resolution

- \bullet pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with 20 MeV energy resolution


- pionless EFT on a 10^3 lattice of size 20 fm [a=2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with $20~{\rm MeV}$ energy resolution

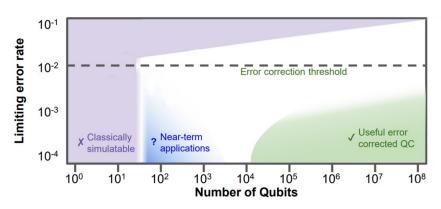
- pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with 20 MeV energy resolution



- \bullet pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- \bullet want $R(q,\omega)$ with $20~{\rm MeV}$ energy resolution

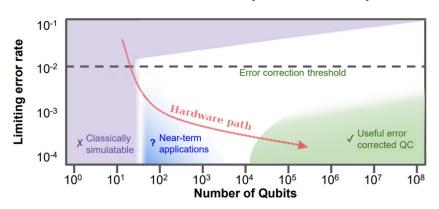
- pionless EFT on a 10^3 lattice of size $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- ullet want $R(q,\omega)$ with 20 MeV energy resolution

we need a quantum device with ≈ 4000 qubits (current record is 72)



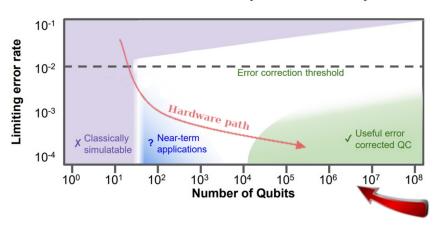
coherence time for 40 Ar naive ≈ 9 years

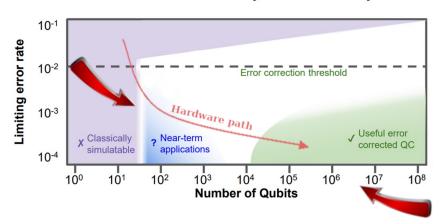
optimized ≈ 3 minutes


- algorithm efficiency is critical
- there is still a long way to go
- find new algorithms and/or approximations for near term

Need Both Quality and Quantity

Alessandro Roggero


Need Both Quality and Quantity


Alessandro Roggero

9/10

Need Both Quality and Quantity

Need Both Quality and Quantity

FNAL - INT - LANL effort

A.R. (INT), J. Carlson & R. Gupta (LANL), G. Perdue, A. Li & A. Macridin (FNAL)

Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments
- remarkable progress for inclusive x-sec of light nuclei (See Lovato's talk)
 - still not enough for exclusive scattering off ⁴⁰Ar, need new ideas: short time approximation(See Carlson's talk)? quantum computing?
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

Alessandro Roggero FNAL - 09 May 2019 10 / 10

Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments
- remarkable progress for inclusive x-sec of light nuclei (See Lovato's talk)
 - still not enough for exclusive scattering off ⁴⁰Ar, need new ideas: short time approximation(See Carlson's talk)? quantum computing?
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

Collaborators:

J.Carlson (LANL)

10 / 10