Lattice QCD and Neutrino-Nucleus Scattering

USQCD Whitepaper arXiv:1904.09931 AS Kronfeld with DG Richards, W Detmold, R Gupta, H-W Lin, K-F Liu, AS Meyer, R Sufian, and S Syritsyn

Lattice QCD and Nuclear Physics

- Neutrino energy reconstruction therefore nuclear models.
- Lattice QCD can inform the models several ways:
 - nucleon-level amplitudes (*cf.*, Rajan's talk);
 - nuclear properties informing chiral EFT in nuclear models—or further "data" to constrain;
 - nuclear properties ab initio (i.e., directly from $\mathscr{L}_{\mathrm{QCD}}$)-
 - ⁶Li before long! ¹²C before retirement!?! ⁴⁰Ca before death?!?

Lattice QCD and Energy Transfer

- Elastic form factors (*cf.*, Rajan's talk).
- Inelastic form factors (pretending, e.g., Δ is stable in QCD).
- Amplitudes $NJ \rightarrow N\pi$ (include information equivalent to interference):
 - much harder—the non-trivial info is encoded in volume dependence.
- Hadron tensor for $N+n\pi$... shallow inelastic scattering region.
- Parton distribution functions for deep inelastic region.
 - (last two have a tricky "inverse problem" to get Laplace, Fourier, or Mellin transform from matrix elements on a discrete set.)

Snapshot of Nucleon Form Factors

Sea quarks	Valence quarks	Nens	a (fm)	M_{π} (MeV)	Collaboration	Ref.	USQCD
2 Wilson-clover	same as sea	11 0).06–0.08	150-490	RQCD	[10]	
2 TM clover	same as sea	1	0.09	130	ETM	[8]	
2 Wilson-clover	same as sea	11 0	.05-0.08	190–470	Mainz (CLS)	[7]	
2+1 overlap	same as sea	4	0.11	290-540	JLQCD	[5]	
2+1 domain wall [11]	overlap	3 0	.08–0.15	170–340	χQCD	[3]	\checkmark
2+1 Wilson-clover	same as sea	1	0.085	146, 135	PACS	[1]	
2+1 Wilson-clover	same as sea	11 0	.05-0.09	200-350	Mainz (CLS)	[2]	
2+1+1 HISQ [12]	Wilson-clover	8 0	.06-0.12	135–210	PNDME	[6]	\checkmark
2+1+1 HISQ [12]	domain wall	16 0	.09–0.15	130-400	CalLat	[4]	\checkmark
2+1+1 TM clover	same as sea	3 0	.09–0.15	140	ETM	[12]	\checkmark
2+1+1 HISQ	same as sea	3 0	.09–0.15	135	Fermilab/MILC	[9]	\checkmark

1. E. Shintani, K. I. Ishikawa, Y. Kuramashi, S. Sasaki and T. Yamazaki [PACS-CS Collaboration], Phys. Rev. D **99**, no. 1, 014510 (2019)

7. S. Capitani et al., Int. J. Mod. Phys. A 34, 1950009 (2019)

 C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis,
K. Ottnad, T. Harris, H. Meyer, G. von Hippel, J. Wilhelm and H. Wittig, arXiv:1809.10638 G. Koutsou, and A. Vaquero Aviles-Casco, Phys. Rev. D 96, 054507 (2017) [hep-lat]

- 3. J. Liang, Y. B. Yang, T. Draper, M. Gong and K. F. Liu [χQCD Collaboration], Phys. Rev. D **98**, no. 7, 074505 (2018)
- 4. C. C. Chang et al., Nature 558, 91 (2018)
- 5. N. Yamanaka et al. [JLQCD Collaboration], Phys. Rev. D 98, 054516 (2018)
- R. Gupta, Y. C. Jang, H. W. Lin, B. Yoon and T. Bhattacharya [PNDME Collaboration], Phys. Rev. D 96, 114503 (2017)

- 9. A. S. Meyer, R. J. Hill, A. S. Kronfeld, R. Li, and J. N. Simone [Fermilab Lattice and MILC Collaborations], PoS LATTICE **2016**, 179 (2016)
- 10. G. S. Bali et al. [RQCD Collaboration], Phys. Rev. D 91, 054501 (2015)
- 11. T. Blum et al. [RBC and UKQCD Collaborations], Phys. Rev. D 93, 074505 (2016)
- 12. A. Bazavov et al. [MILC Collaboration], Phys. Rev. D 87, 054505 (2013)

Snapshot of Hadron Tensor

The elastic case

J. Liang USQCD AHM

⁷

Snapshot of PDFs

Nucleon pseudo-ITD results a=0.127fm m_pi=440MeV

J. Karpie USQCD AHM

