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Issues & Goals 

stage E_inj (MeV) Np/batch (e12) ∆Qx/∆Qy 

PIP-I 400 4.5 0.25/0.31 

PIP-I+ 400 5.6 0.31/0.38 

PIP-II  800 6.5 (0.36/0.44)* 

*) would be with 400MeV injection 

Losses at nominal (PIP-I) intensity were ~8%, can increase at high 
intensity operation   
Simulations goals: 
•  understand experimental observations 
•  make projection for high intensity  
Tools used: 
•  Synergia (A. Macridin, E. Stern) 
•  MADX-SC (Y.A., A. Valishev with a lot of help from F. Schmidt) 
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MADX with Space Charge (MADX-SC)* 
“Adaptive” SC simulations:  
• Beam shape is simplified (Gaussian for now) to use analytics for SC kick 
• Beam sizes are periodically updated (e.g. every turn) based on the ensemble 
evolution during tracking (c.o.m. position can be also updated). 

“Old” version: 
• 2D SC kick calculated using Erskine-Basetti 
formula – no associated longitudinal kick (no 
symplecticity). 
• Exponential fitting of 1-dimensional 
distributions in the transverse action variables   
– requires stable closed optics which may not 
exist at strong SC 
• Periodicity of SC is imposed 
– particle-envelope resonance is suppressed 

beam-beam 
elements 

zyxu
m

mumu ,,,2 ==∑ εβσ

observation point, 
εm  calculation 

*) Important contribution was made by V. Kapin and A. Valishev 
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Old MADX-SC Benchmarking vs PS Data  

Blowup at Qx0 = 6.035 
was understood as the 
statistical noise effect 

Qy0 = 6.476,  
SC tuneshifts : 
∆Qx ≈-0.05, ∆Qy ≈-0.07. 

PS beam emittance evolution over 5⋅105 turns at 2GeV vs. Qx0. 
Dashed lines present experimental results, solid lines with dots 
present MADX simulations with adaptive SC. 

NB: 
good agreement for small SC does not 
guarantee validity for high SC 
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Booster “Flat” Optics Conundrum  

Old HEP optics model (MADX) confirmed by K-modulation 
measurements shows strong perturbation by the extraction dogleg. 
This perturbation can be corrected with tuning quads → “flat optics” 



6/11/2019 Alexahin | MADX-SC Development           IOTA  & High Intensity Beams Workshop, Fermilab 6 

Optics Functions w/o SC 
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Fourier Sectra of β -functions  
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Beam parameters (used by A. Macridin in Synergia simulations): 
Energy = 415 MeV 
ε⊥N

(r.m.s.)=2.34µm (ε⊥N
(95%)=14π mm⋅mrad) 

σz= 0.831532m, σp/p= 0.00185,  
Space charge tuneshifts to 0.24, 0.32 for Np=5.6e10/bunch 
Tracking 5k particles for 2000 turns at fixed energy → the effect of 
space charge (if any) is significantly exaggerated.  

Tracking Simulations 
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MADX-SC Simulations for HEP and “Flat” Lattice 

Losses over 2000 turns as function of bare lattice tunes at nominal Np=5.6e10/bunch. 
At Qx=6.7, Qy=6.8:  HEP → 3.8%, “flat” → 0% 
But operations showed no improvement with “flat” lattice! 
Is anything wrong with MADX-SC? 

Loss %% 

Qx 

Qy Qy 

Qx 
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New algorithm 

• Gaussian fit of the Σ-matrix 
 
• Σ-matrix propagation from observation point (1) to SC elements (2) 
using linear(ized) transport matrix T 
- does not require stable optics to exist, 
- allows for nonstationary distribution - envelope resonances! 
 
• Particle tracking with symplectic 3DoF SC kick (for Gaussian beam 
profile in all 3DoF for now) 
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Gaussian Fit 
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where n is the dimensionality of the problem (any, e.g. 6) and η  is the 
fraction of particles in the core. It can be fitted in the process as well: 
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The rigorous minimization process for                              where 
provides equation for fitted Σ- matrix which can be solved by 
iterations 

Problem: 
Effective weight                                                provides too aggressive suppression of 
contribution of moderate amplitude particles → reduction in the effective number of 
macro-particles → higher statistical fluctuations, in particular “fake coupling” 
Solution: 
Introduce softer weights retaining the general form of the equation for fitted Σ 

( ) ( )1exp[ ( , ) / 2]k k
kW ζ ζ−= − Σ

Y.A. “Computing Eigen-Emittances 
from Tracking Data”, arXiv:1409.5483, 
2014; NAPAC-2016-THPOA17 
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https://arxiv.org/abs/1409.5483
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Introducing Weights for General Distribution 
We can define fitted Σ matrix using weight function W(z) as 
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where the correction term p was introduced as it appears in the rigorous solution on 
the previous slide. To get the correct Σ matrix element for a sample realizing the 
distribution function F(z)   
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For a n-dimensional Gaussian distribution F(z) and weight function 
we get   

1exp[ ( , )]W α ζ ζ−= − Σ
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With α=1/2 p=1/2n/2+1 and we retrieve the “rigorous” result. A smaller value 
α=1/5 looks like the optimum. 
In principle, for every dimension we can use different F, W and p 
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Statistical Effects due to Small N Macroparticles 

β12 

<Rxy> N 

N 

i.e. beam ellipse tilt, is vanishing as 1/N1/2, 
but is rather large for practical N. 
It can be suppressed by symmetry in the 
initial distribution but will likely reappear 

Correlation factor 

2 2/=xyR xy x y

The most annoying is “fake coupling “. 

Cross-plane beta-function β12 can be 
considered as a measure of coupling. 

When reconstructed from a Σ-matrix 
obtained from particle distribution with 
equal emittances it does vanish for N→∞ 
Luckily, we are not using  β12 
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Sigma-Matrix Propagation 

Two options implemented: 
• Periodic Σ mode (next slide) 
• Free Σ mode: fitted Σ-matrix propagated from observation point (1) to 
SC elements (2) around the ring using linear(ized) transport matrix T 
 
 
Linearization of the SC force: 
- averaging over transverse variables (Sacherer, 1971) gives factor 1/2 
compared with small amplitudes in Gaussian beam, 
- averaging over longitudinal coordinate gives another factor 1/√2  in the 
case of Gaussian profile. 
The total factor 1/23/2 makes the SC tuneshift of envelope oscillations in 
a Gaussian bunch much smaller than the tuneshift for small-amplitude 
particles weakening the effect of (Gluckstern’s) particle-envelope 
resonance. 
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Periodic Sigma-Matrix 
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• Using (fitted) Σ-matrix find the eigen-mode emittances εm, m=1,2,3,  
which are imaginary parts of eigenvalues of matrix 

• The periodic Σ matrix provides a quasi-stationary solution, the envelope 
oscillations hence the particle-envelope resonances are suppressed. 

• The periodic Σ matrix is 

where vm,k means k-th component of m-th eigenvector of the 1-turn 
transfer matrix T  
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Toy Lattice with High Space Charge 
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Red and blue: horz and vert emittance in a free Σ mode (beam sizes allowed to oscillate with 
account for nonlinear SC force). 
Magenta and cyan: horz and vert emittance in a periodic Σ mode (periodicity of the beam sizes 
is imposed every turn). 

turn # 

(fit )
, 0/x yε ε

12-cell FODO with 1% error in 1 quad. Bare lattice Qx=3.72, Qy=3.845, 
∆QSC=-0.9, ε0=0.86e-6m (rms) 

Fitted emittances, not RMS  

Effect of “fake” coupling 
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Gluckstern’s Resonance for Booster Parameters 
Manifests itself in the “flat” lattice only for artificially large mismatch:  
at 12.5% beam size modulation the losses are 0.2% in 2000 turns,  
the RMS emittance growth is 
{2.3e-6, 2.2e-6} → {2.9e-6, 2.5e-6}  or  {24%, 13%} increase 

/ yy β/ xx β

F F 

There is only insignificant halo generation. With well-corrected lattice even 
higher space charge can be tolerated. 
 
Therefore losses in the “flat” lattice most likely had a different origin (LLRF) 
identified by C. Bhat, C.-Y. Tan, V. Lebedev  
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Outlook 

We intend to continue development of MADX-SC: 
•  Longitudinal flat profile option (just rectangular for now) 
•  Introduction of the beam ellipse tilt: coupling via SC, “self-skewing” etc.     
- Requires to find method of minimization of the “fake” coupling w/o suppression of 
the real one 

•  Self-consistent optics with coupling and strong SC (based on 4D 
perturbation theory) 
•  Accelerated convergence of the Σ matrix fitting (sometimes it is long)  
•  Introduction of wakes? 
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Additional Slides 
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Pseudo-Flat Optics 2 looks like a victory, but there is no better 
working point than with HEP lattice at high intensity! 

(low intensity) 
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Synergia Simulations (A. Macridin ) 

Qx=0.734
, 

Qy=0.82
4 

Chr=(-17,-9) 

n=7e10 pp bunch 

 horizontal chromaticity 
has a large influence on 
loss 

CPL03 and dogs as in 
Booster 

 Position of the CPLO3 
corrector package is the 
main culprit for beam loss 
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MADX-SC Simulations for Flat Lattice 2 
Np=5.6e10/bunch Np= 8.1e10/bunch 

Losses over 2000 turns as function of bare lattice tunes at nominal 
and PIP-II intensities. Qx+2Qy corrected. 
At Qx=6.7, Qy=6.8 losses are negligible:  0% → 0.07% 

Qy 

Loss %% 

Qx Qx 

Qy 
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Optimum Choice of the Weight Parameter α  

TS for small amplitudes will be twice that in KV beam - σ should be larger 
than the r.m.s. value a/2 . 
Introducing weights as                                         we obtain in the 4D case 

2

2 2 2 2

2( ) exp( ) (0)
2 2 2

rr
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= − → = =

Fitting should provide ~ correct average kick for various beam profiles. 
Consider round flattop (KV) beam of radius “a”: 

2 2 2 2/ 4, / , linear densityx y a aρ λ π λ= = = =

Fitted σ is larger than the r.m.s. 
value a/2  - the property of the so-
called platycurtic (negative excess 
curtosis) distributions. 
α=1/5 looks like the optimum – it 
suppresses halo contribution (but 
not too drastically) and ensures ~ 
correct average kick for various 
beam profiles. 

α σfit/a 

0 1/2 simple r.m.s. 

0.198 0.582 correct average kick  

0.25 0.597 used now 

0.5 0.650 “rigorous” fit 

0.908 1/√2 correct TS 

While for a Gaussian beam of the same r.m.s. x and y sizes 

1exp[ ( , )]W α ζ ζ−= − Σ
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Symplectic 3DoF SC Kick (in Long Bunch) 
Symplecticity is automatically achieved if all kick components are derived from the same SC potential      
 
 
where λ(z) is linear SC density.  A convenient representation of Φ 
 
 
 
 
It satisfies the boundary condition                                 and can be complemented with a longitudinal wake 
which is independent of the transverse position (not to break the symplecticity). 
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Regions of good precision for power series 
and asymptotic expansion for aspect ratio r 
=σy /σx  = 1/3. 
For (x, y) ∈ the white region the numerical 
integration has to be used. 

With parameters set to ensure > 6 digits of 
precision the speed is ~ the same as with 
Erskine-Basetti 2D formulas. 
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Summary from 2018 Workshop on MW rings 
•  From the standpoint of transverse dynamics with space charge there should 
be no problem with PIP-II intensity at the present  injection energy when using 
“flat” optics. 
•  However, we could not reduce losses with these apparently better optics 

We tried: 
•  injection orbit and optics matching 
•  aperture scans 
•  decoupling (though Qx+Qy has not been looked at since 2011) 
•  correction of the 3rd order using upright and skew sextupoles 
•  reduced chromaticity 
•  to see head-tail instability 
•  to detect dipole noise using TBT data  
(quad noise seems unlikely) 
- all to no or very limited success. 

Had we missed anything important? 0.1 0.2 0.3 0.4 0.5
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Some Recent Booster Observations 

Optics functions obtained with the 
MADX Booster model (solid lines: 
magenta – horizontal, cyan – vertical) 
and from the TBT measurements 
(dots). 

Beam intensity (green) and losses at 
some locations.  
Injection losses are reduced to < 3%. 
Losses at ~6ms can be a sign of the 
horz multi-bunch instability – we had 
it before – which can be easily cured 
by chromaticity and/or the damper. 
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