
Machine Learning Experiments  
     for Storage Rings at FAST

Stephen Webb, Jon Edelen 

RadiaSoft, LLC., Boulder, CO 

swebb@radiasoft.net

FAST/IOTA Collaboration Meeting — 12 June 2019

Boulder, Colorado  USA   –   www.radiasoft.net 
 1

mailto:swebb@radiasoft.net


Boulder, Colorado  USA   –   www.radiasoft.net 
 2

Outline of the talk

Machine Learning in accelerators — what’s been done already? 

Leveraging what’s been done — current machine learning projects at RadiaSoft 

Proof-of-concept experiments for machine learning techniques in rings
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Examples of Machine Learning in Accelerators
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    Modeling frequency shift with settings in the PXIE RFQ

A. L. Edelen et al. “Neural Network Model of the PXIE RFQ Cooling 
System and Resonant Frequency Response”, Proc. of IPAC ’16.

The PXIE RFQ resonant frequency depends strongly on the 
temperature of the vanes and walls 

There are a number of parameters that influence the resonant 
frequency in a nonlinear way, such as flow control valve 
settings, water temperature,  RF voltage, ambient temperature…

 
Figure 2: Measured, uncontrolled change in resonant 
frequency after a roughly 5 °C reduction in the cold sup-
ply temperature from the cooling skid. 

MEASURED DATA 
Characterization data were obtained from the RFQ dur-

ing pulsed operation. Parameter scans yielded the fre-
quency response to various combinations of vane valve 
settings, wall valve settings, and RF field amplitudes. 
Figure 3 shows a representative scan over the vane valve 
setting and RF field amplitude.  

In total, the wall valve was varied from 0% to 99% 
open, and the vane valve was varied from 0% to 99% 
open. The cavity field was varied from 0 kV to 70 kV. For 
all data sets, the repetition rate was 10 Hz and the pulse 
duration was 4 ms. LLRF feedback was used during the 
test to regulate the cavity field and maintain the drive 
frequency at 162.4650 MHz. Table 1 shows the range of 
measured system parameters. 

For these measurements, the resonant frequency is cal-
culated from the RF signals as follows: 
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where	'"( and	'", are the magnitudes of the drive signals 
from each amplifier, !"( and !", are the forward phases 
of each drive signal, !" is the calculated forward phase, 
!0	is the cavity phase, f6	is the drive frequency, 34 is the 
loaded quality factor of the cavity, and / is the detuning 
(note that this does not take into account beam loading). 
Because the RFQ is driven by two amplifiers, we need to 
calculate the vector sum of the two forward signals in 
order to obtain the forward phase for the calculation of 
resonant frequency shift. Over the training data, the reso-
nant frequency ranges from 162.4403 MHz to 162.4738 
MHz. 

 
Figure 3: An example scan from the measured data. The 
repetition rate was 10 Hz and the pulse duration was 4 
ms. Note that the fluctuations in the chilled supply tem-
perature have a significant impact on the resonant fre-
quency at these relatively low average RF power levels. 
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A. L. Edelen et al. “Neural Network Model of the PXIE RFQ Cooling System 
and Resonant Frequency Response”, Proc. of IPAC ’16.

Training a neural network on these models 
enables accurate modeling of the resonant 
frequency shift due to these disparate parameters

Table 1: Parameter Ranges Across Measured Data 

Parameter Min Max Units 
Wall Valve Setting  0  99  [% open] 
Vane Valve Setting  0  99  [% open] 
Cavity Field  0  70  [kV] 
Wall Supply Temp.  19.1 20.5  [°C] 
Vane Supply Temp.  18.9 20.4 [°C] 
Wall Entrance Temp.  19.8 22.8 [°C] 
Vane Entrance Temp.  19.5 21.9 [°C] 
Resonant Frequency  162.4403  162.4738  [MHz] 
Cave Temp. 23.3  25.5  [°C] 
Cave Humidity  19.1 36.6 [%] 

 

NEURAL NETWORK MODEL 
Input and Output 

The inputs to the model are the temperature of the wa-
ter entering each cooling sub-circuit (T01, TT01), the 
temperature of the water returning from the RFQ (T02, 
TT02), the two flow control valve read-backs, the ambi-
ent temperature and humidity, and a measure proportional 
to the power entering the cavity (given by the cavity field 
measurement and the duty factor). The output of the mod-
el is the predicted resonant frequency of the RFQ. 

To exclude suspect measurements from training, target 
resonant frequency values are ignored when the cavity 
field drops below 0.5 kV (e.g. during multipactoring or 
sparking). However, as soon as the field recovers, the 
targets are used once again, thus including the thermal 
(and frequency) excursions caused by such interruptions. 

Network Architecture and Training 
For this initial network, a simple feed-forward architec-

ture with multiple previous time-steps embedded as inputs 
was selected. Initially, 30 minutes of previous system data 
were provided with a decaying sample interval. An initial 
topology and set of weights were obtained by conducting 
initial training and subsequently removing connections 
with small weights. The resultant network was then re-
fined with further training. 10 networks with new initiali-
zations were trained using back-propagation in conjunc-
tion with scaled conjugate gradient optimization. Two 
hidden layers with 25 and 7 nodes in each layer respec-
tively were used. 

An approximate hyperbolic tangent activation function 
given by 8 9 = ,

((;<=>?) − 1 was used for all nodes, 
except the output node, which used a linear activation 
function. 

Training, Validation, and Testing Sets 
The validation data were interleaved with the training 

data (every-other sample). The testing data consists of a 
2-D scan over vane valve settings and RF field amplitudes 
under a higher constant wall valve setting than was seen 
during training. The wall was set at 99% open for testing, 
whereas the highest prior value seen was 75% open.  

Performance 
The best-performing network has a mean absolute pre-

diction error of 346 Hz on the test set, 98 Hz on the vali-
dation set, and 116 Hz across all training, validation, and 
testing data. Figure 4 shows the predicted and measured 
resonant frequency for the scan shown in Figure 3. 

 
Figure 4: Measured and predicted resonant frequency 
values for the scan shown in Figure 3 (excluding data 
used for model initialization).  

CONCLUSION 
We have created an initial neural network model that 

predicts the resonant frequency of the RFQ under changes 
in the cooling system and amount of RF heating. It per-
forms sufficiently well for use in a model-based control 
routine. However, refinements could likely be made to the 
network structure to further improve performance. Data 
for CW operation will also need to be obtained, and train-
ing scans with finer granularity will be beneficial. 
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comparison of the frequency shift measured and predicted by the neural network model trained on data

    Modeling frequency shift with settings in the PXIE RFQ
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Surrogate Models are a fast model  
built on simulation and experimental data

Neural networks excel at modeling complex data sets, given enough 
data. Idea is to run a few hundred PIC simulations to train a network, 
then use that network for thousands+ “function evaluations” 

A. L. Edelen et al. “Machine Learning to Enable Orders of Magnitude Speedup in 
Multi-Objective Optimization of Particle Accelerator Systems”, arXiv:1903.07759.

Test Case: Modeling the 
Argonne Wakefield Accelerator
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Surrogate models for fast optimization and online modeling

Running on-line optimization over the many parameters in an 
accelerator — magnet settings, rf phase, space charge effects 
— is computationally too expensive 

Training a neural network on PIC simulation data provides a 
103-106 speedup to optimize the accelerator design 

1 nC

40 nC

Figure 5: Representative examples of comparison between Pareto fronts for 1 nC (top row) and

40 nC (bottom row) obtained by running a GA with the physics simulation and with the ANN

based surrogate model.

ables more individuals to be used in the population and a greater number of generations to be run.

To explore this further, we ran the inputs corresponding to the predicted Pareto points (i.e. those

generated via running a GA with the ANN) through the physics simulation. Upon inspection, the

points on the Pareto front from the ANN match the results from the physics simulation very well

(see Figure 6). This indicates that the ANN has indeed learned an accurate representation of the

underlying physical system, and that the estimate of the Pareto front obtained is closer to the true

Pareto front than that obtained from naively running a GA with the physics simulation. This is

different than merely interpolating between points seen in the training data set, as the ANN was

able to predict more optimal combinations of parameters in a region of parameter space that was

not explicitly represented in the training data.

12

A. L. Edelen et al. “Machine Learning to Enable Orders of Magnitude Speedup in 
Multi-Objective Optimization of Particle Accelerator Systems”, arXiv:1903.07759.

comparison of Pareto fronts obtained 
with OPAL simulations versus neural 

networks surrogate models at 
Argonne Wakefield Accelerator
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    Virtual Diagnostics allow destructive diagnostic  
    “measurements” during normal operation

diagnostic 
measurement 

			+				-	
training 
updates 

ML model    
diagnostic 

measurement 

diagnostic 
prediction 

measurements 
that are always 

available 
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    Longitudinal phase space measurements for FACET-II

C. Emma, A. Edelen, et al., “Machine learning-based longitudinal phase space 
prediction of particle accelerators”, Phys. Rev. Acc. Beams 21, 112802 (2018).

Want to know the shot-to-shot longitudinal 
phase space going into the plasma channel at 
FACET-II, which is an intercepting diagnostic 

Trained a perceptron neural network on simulation 
or actual transverse deflecting cavity data

from a large number of simulations. These simulations
represent the performance of the machine which changes as
a result of several key accelerator parameters jittering
around their design values. The accuracy of this ML model
based on simulation data, as well as its dependence on
diagnostic inputs, will inform the measurement resolution
necessary for this to be successful on the actual machine.
Our second goal is to test out a similar predictive MLmodel
on the Linac Coherent Light Source (LCLS). For that part
of the study we train a ML model using existing nonde-
structive diagnostics and images of the e-beam LPS
obtained with the X-band TCAV [3]. In the following
sections we present results from the simulation study of
FACET-II and measurements from the LCLS, with a
discussion of the steps necessary to implement this diag-
nostic tool on future particle accelerators.

II. FACET-II SIMULATION STUDY

A key performance feature for the success of advanced
acceleration experiments is knowledge and control of the
e-beam LPS and current profile [12]. We therefore train two
separate ML models to predict the current profile and LPS
of the bunch using some key nondestructive diagnostics as
input to the models (see Table I). We consider the nominal
operation of the FACET-II accelerator in single-bunch
mode, with the machine set up to deliver a beam of
10 GeV energy, 25 kA peak current, and <10 μm trans-
verse emittance (see Fig. 1 for a schematic). In order to

capture the performance of the machine we perform 55

LUCRETIA [13] simulations starting from the exit of the
injector, with key linac parameters and the bunch charge
jittering around their nominal values. The simulations
include longitudinal space charge and incoherent and
coherent synchrotron radiation. The mean value and the
range for each simulation parameter scanned was set
using the values from the FACET-II technical design
report (TDR) [1]. The output of these simulations is a
6 × 6 × Np distribution of Np ¼ 2 × 105 macroparticles

TABLE I. Linac and e-beam parameters scanned in the 55

simulations of the FACET-II accelerator. The ranges are chosen
closely based on the jitter parameters from the FACET-II
technical design report (TDR) [1]. The diagnostics fed to the
ML model include random errors introduced artificially to
approximate the measurement accuracy present in the accelerator.

Simulation parameter scanned Range

L1 & L2 phase [deg] "0.25
L1 & L2 voltage [%] "0.1
Bunch charge [%] "1

Input to ML model Accuracy
L1 & L2 phase [deg] "0.1
L1 & L2 voltage [%] "0.05
Ipk at BC (11,14,20) [kA] "ð0.25; 1; 5Þ
ϵn at BC (11,14) [μm] "1
Beam centroid BC (11,14) [m]

FIG. 1. Schematic of the FACET-II and LCLS electron accelerators and example LPS profiles from particle tracking simulations
(FACET-II), experimental measurements (LCLS) and from the ML-based virtual diagnostic predictions. The figure highlights the
similarities between the two accelerator layouts up to the BC20 chicane in FACET-II which is used to increase the current from 3–4 kA
to 10–200 kA.

C. EMMA et al. PHYS. REV. ACCEL. BEAMS 21, 112802 (2018)

112802-2

FACET-II LPS from OPAL simulations (left) and neural 
network trained on simulation data(right)

consideration. Preliminary considerations can be made by
examining changes in the prediction accuracy by training
the ML models using data from the start of our data set
and making predictions on shots taken at the end of the data
set (two hours later). For this case, there is no reduction
in performance for the prediction of the current profile.
The 2D LPS reconstruction however does suffer from a
small but noticeable decrease in prediction accuracy as
shown in Fig. 4(f). The mean (!rms) score for the 2D LPS
reconstruction drops from 0.85! 0.14 to 0.68! 0.14
which may in part be due to the smaller size of the training
set (410 shots compared to 3236). A detailed study of the
robustness and reliability of the ML model for longer drift
times (one day, one week etc.) and with larger data sets will
be conducted and the results reported in future work.
Following such long-term prediction accuracy studies,
the ML model could be deployed as a virtual diagnostic
for predicting the LPS at LCLS when the XTCAV is off.

IV. CONCLUSION

Accurate measurement and control of the LPS distribu-
tion is often critically important for applications of high
brightness electron beams, ranging from free electron lasers
to beam-driven plasma wakefield accelerators. We have
explored the feasibility of training a ML-based virtual
diagnostic for predicting the LPS distribution of particle
accelerators. The study was divided into two parts: a
first section using particle tracking simulations of the
FACET-II linac as training data for the ML model, and a
second using experimental data from the LCLS accelerator.

The simulation study explored the single bunch operation
mode of FACET-II for which we trained two separate
neural networks to predict the current profile and the 2D
LPS image based on the input from a number of non-
intercepting diagnostics (e.g., beam position monitors,
bunch length monitors, emittance measurements). The
experimental study performed on the LCLS linac used
five measurements from nondestructive diagnostics as
well as the XTCAV to measure the electron beam LPS
and train the ML models. The results showed close agree-
ment between the predicted current and 2D LPS profiles and
those obtained from both simulation and experiment.
It is important to note that the accuracy of a predictive

virtual diagnostic based on this kind of supervised learning,
in which the neural network generates a mapping between
input-output pairs of data, depends critically on the accuracy
and resolution of diagnostic inputs. In the experimental
study for LCLS, the temporal resolution of the TCAV was
∼1.2 μm,much smaller than the typical bunch length which
ranged from 6–60 μm. In our FACET-II simulation exam-
ple, the training data fed to the ML model assumes a 2 μm
resolution for the LPS images which may present a chal-
lenge for the current FACET-II TCAV design. The ability
to resolve fine features in the LPS will be challenging,
especially in the longitudinal direction due to the very short
bunches (σz ∼ 1 μm) which are at or beyond the resolution
limit of the existing TCAV diagnostic. While the temporal
reconstruction may be subject to experimental challenges,
the simulation study gives us confidence in the ability
of the virtual diagnostic to accurately resolve and predict
the energy distribution with ∼10 MeV=pix resolution.

FIG. 4. (a)–(c) Examples of reconstructed LPS and current profiles from the LCLS accelerator. The measured data is collected using
the XTCAVand the prediction is made using two separate NNs for the LPS and the current profile. The plots show good agreement in
predicting both the LPS and the current profile. For some shots the LPS reconstruction suffers from numerical artifacts [see (c)] which
lead to an imperfect reconstruction. (d) Measured and predicted values for the peak and FWHM of the current profile. (e) Correlation
between peak current from the XTCAV and the BC2 current monitor highlighting a number of bad shots (2% of the total) where the
difference between the two values is large and the prediction accuracy is low. (f) Score for the 2D LPS prediction model trained on 3236
shots and tested on 808 shots randomly selected from the entire data set (grey). Score for the 2D LPS prediction with model trained on
410 shots from the start of the data set and tested on 200 shots recorded at the end of the data set two hours later (yellow).

MACHINE LEARNING-BASED LONGITUDINAL … PHYS. REV. ACCEL. BEAMS 21, 112802 (2018)

112802-5

LCLS LPS from transverse deflecting cavity measurements (left) and 
neural network trained on transverse deflecting cavity data (right)
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RadiaSoft Active Projects with Machine Learning for Accelerators

Develop simulation tools and toolboxes for implementing a virtual 
transverse deflecting cavity to support high-efficiency FEL experiments 

Develop and test a browser based toolbox for applying machine learning 
to accelerators
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     TESSA-266 Experiment: An Ultra-      
     High-Efficiency Free-Electron Laser

*in collaboration with Argonne National Laboratory, UCLA, and RadiaBeam

J. Duris et al. “Tapering enhanced stimulated superradiant 
amplification”, New J. Phys. (2015).
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     Longitudinal phase space measurement 
     for high-efficiency free-electron laser

We want to know the shot-to-shot longitudinal 
phase space going into the tapered TESSA 
undulator, which is an intercepting diagnostic

LEA beamline has CSR, wake fields, and 
longitudinal space charge, which can cause shot 
to shot variation in the LPS that we need to 
understand to analyze TESSA performance

*in collaboration with Argonne National Laboratory, UCLA, and RadiaBeam

RadiaBeam transverse deflecting cavity

Effort supported with a Phase II SBIR by DOE Office of Science, 
Office of Basic Energy Science under contract no. DE-SC0018571.
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Want to develop an online model of the 
Fermilab linac using surrogate models

Complex	Physics	/	High	Fidelity	Simula8ons	

Ion	Source	 MEBT	 Booster	RFQ	 Low	Energy	
LINAC	

High	Energy	
LINAC	

Modular	Neural	Network	Surrogates	

Ion	Source	 MEBT	
Surrogate	 Booster	RFQ	

Surrogate	

Low	Energy	
LINAC	

Surrogate	

High	Energy	
LINAC	

Surrogate	

Modular surrogate models allows 
easy retraining for similar machines
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Goal is to develop a machine learning 
toolbox in the Sirepo framework

Sirepo	ML	Toolbox	
Data	Gathering	and	Algorithm	Tes9ng	

Communica9on	Protocol	to	
Accelerator	Control	Systems	

EPICS	 ACNET	

Simula9ons	
	

Mad-X	
Elegant	
Synergia	

Training	and	Valida9on		

Supervised	
Learning	

Unsupervised	
Learning	

Reinforcement	
Learning	

Packaging	and	Deployment	
(Deliver	Python	modules	that	can	be	

integrated	with	opera9ons)	
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General application to rings— 
     Can we predict long-term behavior from short-term data?



f(~z)
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     Can a neural network predict long-term BPM 
     measurements from short time-series data?
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     Can a neural network predict long-term BPM 
     measurements from short time-series data?

For varying elliptic element strength, kick the 
beam transversely 

Determine how many turns worth of BPM data is 
required to reliably predict the next, much longer 
set of turns 

First step towards proof-of-concept many-turn 
virtual diagnostics (replacement for gas jet 
diagnostic or phosphor screen, for example)
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General application to rings— 
     Can we determine “bad” beam behavior from normal operation?
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     Clustering algorithms can classify distinct operating modes  
     based on diagnostic data
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     Anomaly detection looks for data points that “don’t belong”

?
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     Can we then detect the onset of a slow instability 
     using anomaly detection?

E. Stern et al. “Suppression of Instabilities in Generated by an Anti-
Damper with a Nonlinear Magnetic Element in IOTA”, Proc. of IPAC ’18.

Schematic of the IOTA ring with a pick-up [P] and kicker [K] for an anti-damper

PK

Can we use clustering and anomaly 
detection to determine if we’ve 
turned on the anti-damper? 

How long does it take to detect that 
we’ve turned on the anti-damper?


