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Outline of the talk

Machine Learning in accelerators — what’s been done already?
Leveraging what’s been done — current machine learning projects at RadiaSoft

Proof-of-concept experiments for machine learning techniques in rings
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Examples of Machine Learning in Accelerators
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Modeling frequency shift with settings in the PXIE RFQ

The PXIE RFQ resonant frequency depends strongly on the
temperature of the vanes and walls

There are a number of parameters that influence the resonant
frequency in a nonlinear way, such as flow control valve
settings, water temperature, RF voltage, ambient temperature...
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A. L. Edelen et al. “Neural Network Model of the PXIE RFQ Cooling
System and Resonant Frequency Response”, Proc. of IPAC '16.
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Modeling frequency shift with settings in the PXIE RFQ

Training a neural network on these models
enables accurate modeling of the resonant
frequency shift due to these disparate parameters
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comparison of the frequency shift measured and predicted by the neural network model trained on data

A. L. Edelen et al. “Neural Network Model of the PXIE RFQ Cooling System
and Resonant Frequency Response”, Proc. of IPAC "16.
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sSurrogate Models are a fast model
built on simulation and experimental data

Neural networks excel at modeling complex data sets, given enough
data. Idea is to run a few hundred PIC simulations to train a network,
then use that network for thousands+ “function evaluations”

Test Case: Modeling the
Argonne Wakefield Accelerator
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A. L. Edelen et al. “Machine Learning to Enable Orders of Magnitude Speedup in
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Multi-Objective Optimization of Particle Accelerator Systems”, arXiv:1903.07759.
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sSurrogate models for fast optimization and online modeling

Running on-line optimization over the many parameters in an

accelerator — magnet settings, rf phase, space charge effects
— is computationally too expensive

Training a neural network on PIC simulation data provides a
103-10¢ speedup to optimize the accelerator design
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A. L. Edelen et al. “Machine Learning to Enable Orders of Magnitude Speedup in
Multi-Objective Optimization of Particle Accelerator Systems”, arXiv:1903.07759.
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Virtual Diagnostics allow destructive diagnostic
“measurements” during normal operation
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Longitudinal phase space measurements for FACET-II

Want to know the shot-to-shot longitudinal
phase space going into the plasma channel at
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LCLS LPS from transverse deflecting cavity measurements (left) and

FACET-II LPS from OPAL simulations (left) and neural neural network trained on transverse deflecting cavity data (right)

network trained on simulation data(right)

C. Emma, A. Edelen, et al., “Machine learning-based longitudinal phase space
prediction of particle accelerators”, Phys. Rev. Acc. Beams 21, 112802 (2018).
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RadiaSoft Active Projects with Machine Learning for Accelerators

Develop simulation tools and toolboxes for implementing a virtual
transverse deflecting cavity to support high-efficiency FEL experiments

Develop and test a browser based toolbox for applying machine learning
to accelerators
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TESSA-266 Experiment: An Ultra-
High-Efficiency Free-Electron Laser

*In collaboration with Argonne National Laboratory, UCLA, and RadiaBeam

Strongly tapered undulator Amplified

/\ output pulse
Input seed pulse ”
o M
M“ Decelerated e-beam
High energy prebunched e-beam

J. Duris et al. “Tapering enhanced stimulated superradiant
amplification”, New J. Phys. (2015).
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Longitudinal phase space measurement
for high-efficiency free-electron laser

*In collaboration with Argonne National Laboratory, UCLA, and RadiaBeam
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LEA beamline has CSR, wake fields, and
, longitudinal space charge, which can cause shot
RadiaBeam transverse deflecting cavity to shot variation in the LPS that we need to
understand to analyze TESSA performance

Effort supported with a Phase Il SBIR by DOE Office of Science,
Office of Basic Energy Science under contract no. DE-SC0018571.
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Want to develop an online model of the
Fermilab linac using surrogate models

Complex Physics / High Fidelity Simulations

Low Energy High Energy

lon Source LINAC LINAC

Modular Neural Network Surrogates

Low Ener High Ener
RFQ MEBT = S

lon Source LINAC LINAC
Surrogate Surrogate
Surrogate Surrogate

Modular surrogate models allows
easy retraining for similar machines
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Goal is to develop a machine learning
toolbox In the Sirepo framework

Data Gathering and Algorithm Testing

Communication Protocol to
Accelerator Control Systems

EPICS ACNET
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Sirepo ML Toolbox

Supervised Unsupervised

Simulations : :
Learning Learning

Mad-X

Elegant
Synergia
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Training and Validation

Reinforcement
Learning
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General application to rings—
Can we predict long-term behavior from short-term data?
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Can a neural network predict long-term BPM
measurements from short time-series data?

Centroid (mm)

horizontal kick: 2 kV
vertical kick: 0.4

magnet t: 0.289027466368
current: -0.233385218315

300 400
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Can a neural network predict long-term BPM

measurements from short time-series data?

For varying elliptic element strength, kick the
beam transversely

Determine how many turns worth of BPM data is
required to reliably predict the next, much longer
set of turns

First step towards proof-of-concept many-turn

virtual diagnostics (replacement for gas jet
diagnostic or phosphor screen, for example)
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General application to rings—
Can we determine “bad” beam behavior from normal operation?
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Clustering algorithms can classify distinct operating modes
based on diagnostic data
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Anomaly detection looks for data points that “don’t belong”

7?7 ®
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Can we then detect the onset of a slow instability
using anomaly detection?

Can we use clustering and anomaly
detection to determine if we’ve
turned on the anti-damper?

How long does it take to detect that
we’ve turned on the anti-damper?
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Schematic of the I0TA ring with a pick-up [P] and kicker [K] for an anti-damper

E. Stern et al. “Suppression of Instabilities in Generated by an Anti-
Damper with a Nonlinear Magnetic Element in I0TA”, Proc. of IPAC "18.
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